Suppr超能文献

行波在耳蜗中传播的生物物理起源。

The biophysical origin of traveling-wave dispersion in the cochlea.

机构信息

Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon, USA.

出版信息

Biophys J. 2010 Sep 22;99(6):1687-95. doi: 10.1016/j.bpj.2010.07.004.

Abstract

Sound processing begins at the peripheral auditory system, where it undergoes a highly complex transformation and spatial separation of the frequency components inside the cochlea. This sensory signal processing constitutes a neurophysiological basis for psychoacoustics. Wave propagation in the cochlea, as shown by measurements of basilar membrane velocity and auditory nerve responses to sound, has demonstrated significant frequency modulation (dispersion), in addition to tonotopic gain and active amplification. The physiological and physical basis for this dispersion remains elusive. In this article, a simple analytical model is presented, along with experimental validation using physiological measurements from guinea pigs, to identify the origin of traveling-wave dispersion in the cochlea. We show that dispersion throughout the cochlea is fundamentally due to the coupled fluid-structure interaction between the basilar membrane and the scala fluids. It is further influenced by the variation in physical and geometrical properties of the basilar membrane, the sensitivity or gain of the hearing organ, and the relative dominance of the compression mode at about one-third octave beyond the best frequency.

摘要

声音处理始于外围听觉系统,在那里,声音的频率成分在耳蜗内经历高度复杂的转换和空间分离。这种感觉信号处理构成了心理声学的神经生理学基础。正如基底膜速度的测量和听觉神经对声音的反应所显示的那样,声波在耳蜗中的传播除了具有音调增益和主动放大外,还具有显著的频率调制(频散)。这种频散的生理和物理基础仍然难以捉摸。本文提出了一个简单的分析模型,并使用豚鼠的生理测量进行了实验验证,以确定耳蜗中行波频散的起源。我们表明,整个耳蜗中的频散主要是由于基底膜和 scala 液之间的耦合流固相互作用所致。它还受到基底膜物理和几何特性、听觉器官灵敏度或增益以及最佳频率以外约三分之一八度处压缩模式相对优势的变化的影响。

相似文献

6
Fast reverse propagation of sound in the living cochlea.活体耳蜗中声音的快速反向传播。
Biophys J. 2010 Jun 2;98(11):2497-505. doi: 10.1016/j.bpj.2010.03.003.
8
Mechanical tuning and amplification within the apex of the guinea pig cochlea.豚鼠耳蜗顶端的机械调谐与放大
J Physiol. 2017 Jul 1;595(13):4549-4561. doi: 10.1113/JP273881. Epub 2017 May 21.
9
Intracochlear sound pressure measurements in guinea pigs.豚鼠耳蜗内声压测量
Hear Res. 1980 Jun;2(3-4):191-205. doi: 10.1016/0378-5955(80)90057-x.
10
Effect of opening and draining the cochlea.打开并引流耳蜗的效果。
J Acoust Soc Am. 1985 Jul;78(1 Pt 1):84-9. doi: 10.1121/1.393090.

引用本文的文献

7
Dual traveling waves in an inner ear model with two degrees of freedom.具有两个自由度的内耳模型中的双行波。
Phys Rev Lett. 2011 Aug 19;107(8):088101. doi: 10.1103/PhysRevLett.107.088101. Epub 2011 Aug 16.

本文引用的文献

6
Basilar membrane tension calculations for the gerbil cochlea.沙鼠耳蜗基底膜张力计算
J Acoust Soc Am. 2007 Feb;121(2):994-1002. doi: 10.1121/1.2404916.
7
Efficient auditory coding.高效听觉编码
Nature. 2006 Feb 23;439(7079):978-82. doi: 10.1038/nature04485.
8
Speech recognition with amplitude and frequency modulations.具有幅度和频率调制的语音识别。
Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2293-8. doi: 10.1073/pnas.0406460102. Epub 2005 Jan 27.
9
Music perception with cochlear implants: a review.人工耳蜗植入的音乐感知:综述
Trends Amplif. 2004;8(2):49-82. doi: 10.1177/108471380400800203.
10
Longitudinal pattern of basilar membrane vibration in the sensitive cochlea.敏感耳蜗中基底膜振动的纵向模式。
Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17101-6. doi: 10.1073/pnas.262663699. Epub 2002 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验