Suppr超能文献

相分离驱动 RNA 病毒诱导的 NLRP6 炎性体激活。

Phase separation drives RNA virus-induced activation of the NLRP6 inflammasome.

机构信息

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.

Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, China.

出版信息

Cell. 2021 Nov 11;184(23):5759-5774.e20. doi: 10.1016/j.cell.2021.09.032. Epub 2021 Oct 21.

Abstract

NLRP6 is important in host defense by inducing functional outcomes including inflammasome activation and interferon production. Here, we show that NLRP6 undergoes liquid-liquid phase separation (LLPS) upon interaction with double-stranded RNA (dsRNA) in vitro and in cells, and an intrinsically disordered poly-lysine sequence (K350-354) of NLRP6 is important for multivalent interactions, phase separation, and inflammasome activation. Nlrp6-deficient or Nlrp6 mutant mice show reduced inflammasome activation upon mouse hepatitis virus or rotavirus infection, and in steady state stimulated by intestinal microbiota, implicating NLRP6 LLPS in anti-microbial immunity. Recruitment of ASC via helical assembly solidifies NLRP6 condensates, and ASC further recruits and activates caspase-1. Lipoteichoic acid, a known NLRP6 ligand, also promotes NLRP6 LLPS, and DHX15, a helicase in NLRP6-induced interferon signaling, co-forms condensates with NLRP6 and dsRNA. Thus, LLPS of NLRP6 is a common response to ligand stimulation, which serves to direct NLRP6 to distinct functional outcomes depending on the cellular context.

摘要

NLRP6 通过诱导包括炎症小体激活和干扰素产生在内的功能结果,在宿主防御中起着重要作用。在这里,我们表明 NLRP6 在与双链 RNA(dsRNA)相互作用时,在体外和细胞中经历液-液相分离(LLPS),并且 NLRP6 的一个固有无序多赖氨酸序列(K350-354)对于多价相互作用、相分离和炎症小体激活很重要。Nlrp6 缺陷或突变小鼠在感染小鼠肝炎病毒或轮状病毒时,或在肠道微生物群刺激的稳定状态下,炎症小体激活减少,表明 NLRP6 LLPS 参与了抗微生物免疫。ASC 通过螺旋组装的募集使 NLRP6 凝聚物固定,ASC 进一步募集并激活 caspase-1。脂磷壁酸,一种已知的 NLRP6 配体,也促进 NLRP6 LLPS,并且 DHX15,一种 NLRP6 诱导的干扰素信号中的解旋酶,与 NLRP6 和 dsRNA 共同形成凝聚物。因此,NLRP6 的 LLPS 是对配体刺激的常见反应,根据细胞环境的不同,将 NLRP6 导向不同的功能结果。

相似文献

1
Phase separation drives RNA virus-induced activation of the NLRP6 inflammasome.
Cell. 2021 Nov 11;184(23):5759-5774.e20. doi: 10.1016/j.cell.2021.09.032. Epub 2021 Oct 21.
2
DHX15 is required to control RNA virus-induced intestinal inflammation.
Cell Rep. 2021 Jun 22;35(12):109205. doi: 10.1016/j.celrep.2021.109205.
3
A mouse model to distinguish NLRP6-mediated inflammasome-dependent and -independent functions.
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2321419121. doi: 10.1073/pnas.2321419121. Epub 2024 Jan 30.
4
Nlrp6- and ASC-Dependent Inflammasomes Do Not Shape the Commensal Gut Microbiota Composition.
Immunity. 2017 Aug 15;47(2):339-348.e4. doi: 10.1016/j.immuni.2017.07.011. Epub 2017 Aug 8.
5
The NLRP6 Inflammasome Recognizes Lipoteichoic Acid and Regulates Gram-Positive Pathogen Infection.
Cell. 2018 Nov 29;175(6):1651-1664.e14. doi: 10.1016/j.cell.2018.09.047. Epub 2018 Nov 1.
8
The important role of NLRP6 inflammasome in Pasteurella multocida infection.
Vet Res. 2022 Oct 12;53(1):81. doi: 10.1186/s13567-022-01095-0.
9
Molecular mechanism for NLRP6 inflammasome assembly and activation.
Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2052-2057. doi: 10.1073/pnas.1817221116. Epub 2019 Jan 23.
10
The Critical Role of NLRP6 Inflammasome in Infection In Vitro and In Vivo.
Int J Mol Sci. 2021 Apr 8;22(8):3876. doi: 10.3390/ijms22083876.

引用本文的文献

1
Expression of intron-containing HIV-1 RNA induces NLRP1 inflammasome activation in myeloid cells.
PLoS Biol. 2025 Sep 8;23(9):e3003320. doi: 10.1371/journal.pbio.3003320. eCollection 2025 Sep.
2
Biomolecular condensates in plant immunity.
Cell Host Microbe. 2025 Aug 13;33(8):1276-1290. doi: 10.1016/j.chom.2025.06.014.
3
Catch me if you can: viral nucleic acids to host sensors.
Front Immunol. 2025 Jul 28;16:1632283. doi: 10.3389/fimmu.2025.1632283. eCollection 2025.
4
In silico prediction of variant effects: promises and limitations for precision plant breeding.
Theor Appl Genet. 2025 Jul 28;138(8):193. doi: 10.1007/s00122-025-04973-1.
6
Liquid‒liquid phase separation: a potentially fundamental mechanism of sepsis.
Cell Death Discov. 2025 Jul 7;11(1):310. doi: 10.1038/s41420-025-02599-2.
8
In Vitro Liquid-Liquid Phase Separation Assay for Viral Proteins.
Methods Mol Biol. 2025;2940:63-78. doi: 10.1007/978-1-0716-4615-1_7.
9
Cell-Autonomous Immunity: From Cytosolic Sensing to Self-Defense.
Int J Mol Sci. 2025 Apr 24;26(9):4025. doi: 10.3390/ijms26094025.

本文引用的文献

1
A framework for understanding the functions of biomolecular condensates across scales.
Nat Rev Mol Cell Biol. 2021 Mar;22(3):215-235. doi: 10.1038/s41580-020-00303-z. Epub 2020 Nov 9.
2
HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation.
Science. 2020 Sep 18;369(6510). doi: 10.1126/science.aas8995.
3
The nucleolus as a multiphase liquid condensate.
Nat Rev Mol Cell Biol. 2021 Mar;22(3):165-182. doi: 10.1038/s41580-020-0272-6. Epub 2020 Sep 1.
4
5
Mechanisms and Regulation of RNA Condensation in RNP Granule Formation.
Trends Biochem Sci. 2020 Sep;45(9):764-778. doi: 10.1016/j.tibs.2020.05.002. Epub 2020 May 11.
6
Higher-order assemblies in innate immune and inflammatory signaling: A general principle in cell biology.
Curr Opin Cell Biol. 2020 Apr;63:194-203. doi: 10.1016/j.ceb.2020.03.002. Epub 2020 Apr 6.
7
NLRP6 self-assembles into a linear molecular platform following LPS binding and ATP stimulation.
Sci Rep. 2020 Jan 13;10(1):198. doi: 10.1038/s41598-019-57043-0.
8
Segmented Filamentous Bacteria Prevent and Cure Rotavirus Infection.
Cell. 2019 Oct 17;179(3):644-658.e13. doi: 10.1016/j.cell.2019.09.028. Epub 2019 Oct 10.
9
Gasdermin D activity in inflammation and host defense.
Sci Immunol. 2019 Sep 6;4(39). doi: 10.1126/sciimmunol.aav1447.
10
Inflammasomes: Threat-Assessment Organelles of the Innate Immune System.
Immunity. 2019 Oct 15;51(4):609-624. doi: 10.1016/j.immuni.2019.08.005. Epub 2019 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验