Suppr超能文献

光照条件对微藻生长、脂质含量、类胡萝卜素及脂肪酸组成的影响

Influence of Light Conditions on Microalgae Growth and Content of Lipids, Carotenoids, and Fatty Acid Composition.

作者信息

Maltsev Yevhen, Maltseva Kateryna, Kulikovskiy Maxim, Maltseva Svetlana

机构信息

Laboratory of Molecular Systematics of Aquatic Plants, K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia.

Faculty of Chemistry and Biology, Bogdan Khmelnitsky Melitopol State Pedagogical University, 72312 Melitopol, Ukraine.

出版信息

Biology (Basel). 2021 Oct 18;10(10):1060. doi: 10.3390/biology10101060.

Abstract

Microalgae are a valuable natural resource for a variety of value-added products. The growth of microalgae is determined by the impact of many factors, but, from the point of view of the implementation of autotrophic growth, light is of primary importance. This work presents an overview of the influence of light conditions on the growth of microalgae, the content of lipids, carotenoids, and the composition of fatty acids in their biomass, taking into account parameters such as the intensity, duration of lighting, and use of rays of different spectral composition. The optimal light intensity for the growth of microalgae lies in the following range: 26-400 µmol photons m s. An increase in light intensity leads to an activation of lipid synthesis. For maximum lipid productivity, various microalgae species and strains need lighting of different intensities: from 60 to 700 µmol photons m s. Strong light preferentially increases the triacylglyceride content. The intensity of lighting has a regulating effect on the synthesis of fatty acids, carotenoids, including β-carotene, lutein and astaxanthin. In intense lighting conditions, saturated fatty acids usually accumulate, as well as monounsaturated ones, and the number of polyunsaturated fatty acids decreases. Red as well as blue LED lighting improves the biomass productivity of microalgae of various taxonomic groups. Changing the duration of the photoperiod, the use of pulsed light can stimulate microalgae growth, the production of lipids, and carotenoids. The simultaneous use of light and other stresses contributes to a stronger effect on the productivity of algae.

摘要

微藻是多种增值产品的宝贵自然资源。微藻的生长受多种因素影响,但从自养生长的角度来看,光照至关重要。本文综述了光照条件对微藻生长、脂质含量、类胡萝卜素以及其生物量中脂肪酸组成的影响,同时考虑了光照强度、光照时长以及不同光谱组成光线的使用等参数。微藻生长的最佳光照强度范围为:26 - 400 μmol光子·m⁻²·s⁻¹。光照强度增加会导致脂质合成激活。为实现最大脂质生产率,不同的微藻物种和菌株需要不同强度的光照:60至700 μmol光子·m⁻²·s⁻¹。强光优先增加三酰甘油含量。光照强度对脂肪酸、类胡萝卜素(包括β - 胡萝卜素、叶黄素和虾青素)的合成具有调节作用。在强光条件下,通常会积累饱和脂肪酸以及单不饱和脂肪酸,而多不饱和脂肪酸的数量会减少。红色和蓝色LED照明可提高不同分类群微藻的生物量生产率。改变光周期时长、使用脉冲光可刺激微藻生长、脂质和类胡萝卜素的产生。同时施加光照和其他胁迫对藻类生产力的影响更强。

相似文献

3
Hibberdia magna (Chrysophyceae): a promising freshwater fucoxanthin and polyunsaturated fatty acid producer.
Microb Cell Fact. 2023 Apr 19;22(1):73. doi: 10.1186/s12934-023-02061-x.
4
Creatinine combined with light increases the contents of lutein and β-carotene, the main carotenoids of Dunaliella bardawil.
Enzyme Microb Technol. 2021 Nov;151:109913. doi: 10.1016/j.enzmictec.2021.109913. Epub 2021 Sep 15.
6
Flashing light emitting diodes (LEDs) induce proteins, polyunsaturated fatty acids and pigments in three microalgae.
J Biotechnol. 2021 Jan 10;325:15-24. doi: 10.1016/j.jbiotec.2020.11.019. Epub 2020 Nov 25.
8
Formation of Lutein, β-Carotene and Astaxanthin in a sp. Isolate.
Molecules. 2022 Oct 17;27(20):6950. doi: 10.3390/molecules27206950.
9
Evaluation of colour temperatures in the cultivation of Dunaliella salina and Nannochloropsis oculata in the production of lipids and carbohydrates.
Environ Sci Pollut Res Int. 2018 Aug;25(22):21332-21340. doi: 10.1007/s11356-017-9764-0. Epub 2017 Jul 25.
10
Content of Primary and Secondary Carotenoids in the Cells of Cryotolerant Microalgae .
Biochemistry (Mosc). 2024 Jul;89(7):1251-1259. doi: 10.1134/S0006297924070071.

引用本文的文献

2
Tapping the microalgal potential: genetic precision and stress-induction for enhanced astaxanthin and biofuel production.
Biotechnol Biofuels Bioprod. 2025 Aug 14;18(1):92. doi: 10.1186/s13068-025-02656-z.
6
Peculiar proteome of dark-cultivated Euglena gracilis.
Sci Rep. 2025 Jul 16;15(1):25721. doi: 10.1038/s41598-025-11308-z.
8
In Vitro Culture, Genetic Transformation and the Production of Biopharmaceuticals in Microalgae.
Int J Mol Sci. 2025 Apr 20;26(8):3890. doi: 10.3390/ijms26083890.
9
Nutritional and Amino Acid Composition of Scenedesmus sp. Cultivated Under Various Light Intensities.
Curr Microbiol. 2025 May 2;82(6):274. doi: 10.1007/s00284-025-04248-4.

本文引用的文献

2
The Contribution Ratio of Autotrophic and Heterotrophic Metabolism during a Mixotrophic Culture of .
Int J Environ Res Public Health. 2021 Feb 2;18(3):1353. doi: 10.3390/ijerph18031353.
3
Reprogramming microorganisms for the biosynthesis of astaxanthin via metabolic engineering.
Prog Lipid Res. 2021 Jan;81:101083. doi: 10.1016/j.plipres.2020.101083. Epub 2020 Dec 26.
4
Divergence of photosynthetic strategies amongst marine diatoms.
PLoS One. 2020 Dec 28;15(12):e0244252. doi: 10.1371/journal.pone.0244252. eCollection 2020.
6
Astaxanthin accumulation in the green microalga : Effect of initial phosphate concentration and stepwise/continuous light stress.
Biotechnol Rep (Amst). 2020 Oct 8;28:e00538. doi: 10.1016/j.btre.2020.e00538. eCollection 2020 Dec.
7
Acclimation of Chlamydomonas reinhardtii to extremely strong light.
Photosynth Res. 2021 Jan;147(1):91-106. doi: 10.1007/s11120-020-00802-2. Epub 2020 Dec 6.
8
Biofilms in caves: easy method for the assessment of dominant phototrophic groups/taxa in situ.
Environ Monit Assess. 2020 Oct 21;192(11):720. doi: 10.1007/s10661-020-08686-4.
9
Long-Chain Saturated Fatty Acids, Palmitic and Stearic Acids, Enhance the Repair of Photosystem II.
Int J Mol Sci. 2020 Oct 12;21(20):7509. doi: 10.3390/ijms21207509.
10
Photoprotective Role of Neoxanthin in Plants and Algae.
Molecules. 2020 Oct 11;25(20):4617. doi: 10.3390/molecules25204617.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验