Suppr超能文献

识别有再次入院风险的儿童:入院时与传统出院时再次入院预测模型的比较

Identifying Children at Readmission Risk: At-Admission versus Traditional At-Discharge Readmission Prediction Model.

作者信息

Symum Hasan, Zayas-Castro José

机构信息

Industrial and Management Systems Engineering, University of South Florida, Tampa, FL 33620, USA.

出版信息

Healthcare (Basel). 2021 Oct 7;9(10):1334. doi: 10.3390/healthcare9101334.

Abstract

The timing of 30-day pediatric readmissions is skewed with approximately 40% of the incidents occurring within the first week of hospital discharges. The skewed readmission time distribution coupled with delay in health information exchange among healthcare providers might offer a limited time to devise a comprehensive intervention plan. However, pediatric readmission studies are thus far limited to the development of the prediction model after hospital discharges. In this study, we proposed a novel pediatric readmission prediction model at the time of hospital admission which can improve the high-risk patient selection process. We also compared proposed models with the standard at-discharge readmission prediction model. Using the Hospital Cost and Utilization Project database, this prognostic study included pediatric hospital discharges in Florida from January 2016 through September 2017. Four machine learning algorithms-logistic regression with backward stepwise selection, decision tree, Support Vector machines (SVM) with the polynomial kernel, and Gradient Boosting-were developed for at-admission and at-discharge models using a recursive feature elimination technique with a repeated cross-validation process. The performance of the at-admission and at-discharge model was measured by the area under the curve. The performance of the at-admission model was comparable with the at-discharge model for all four algorithms. SVM with Polynomial Kernel algorithms outperformed all other algorithms for at-admission and at-discharge models. Important features associated with increased readmission risk varied widely across the type of prediction model and were mostly related to patients' demographics, social determinates, clinical factors, and hospital characteristics. Proposed at-admission readmission risk decision support model could help hospitals and providers with additional time for intervention planning, particularly for those targeting social determinants of children's overall health.

摘要

30天小儿再入院的时间分布存在偏差,约40%的事件发生在出院后的第一周内。再入院时间分布的偏差,加上医疗服务提供者之间健康信息交换的延迟,可能会限制制定全面干预计划的时间。然而,迄今为止,小儿再入院研究仅限于出院后预测模型的开发。在本研究中,我们提出了一种在入院时的新型小儿再入院预测模型,该模型可以改进高危患者的选择过程。我们还将提出的模型与标准的出院时再入院预测模型进行了比较。利用医院成本和利用项目数据库,这项预后研究纳入了2016年1月至2017年9月佛罗里达州的小儿出院病例。使用递归特征消除技术和重复交叉验证过程,为入院时和出院时的模型开发了四种机器学习算法——带向后逐步选择的逻辑回归、决策树、具有多项式核的支持向量机(SVM)和梯度提升。通过曲线下面积来衡量入院时和出院时模型的性能。对于所有四种算法,入院时模型的性能与出院时模型相当。具有多项式核算法的支持向量机在入院时和出院时模型中优于所有其他算法。与再入院风险增加相关的重要特征在预测模型类型之间差异很大,并且大多与患者的人口统计学、社会决定因素、临床因素和医院特征有关。提出的入院时再入院风险决策支持模型可以帮助医院和医疗服务提供者有更多时间进行干预规划,特别是对于那些针对儿童整体健康社会决定因素的规划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f62/8544577/5efcf8fe1df8/healthcare-09-01334-g001.jpg

相似文献

2
Predictive modeling for 14-day unplanned hospital readmission risk by using machine learning algorithms.
BMC Med Inform Decis Mak. 2021 Oct 20;21(1):288. doi: 10.1186/s12911-021-01639-y.
5
An improved support vector machine-based diabetic readmission prediction.
Comput Methods Programs Biomed. 2018 Nov;166:123-135. doi: 10.1016/j.cmpb.2018.10.012. Epub 2018 Oct 12.
6
How Good Is Machine Learning in Predicting All-Cause 30-Day Hospital Readmission? Evidence From Administrative Data.
Value Health. 2020 Oct;23(10):1307-1315. doi: 10.1016/j.jval.2020.06.009. Epub 2020 Sep 7.
7
Prediction of patient admission and readmission in adults from a Colombian cohort with bipolar disorder using artificial intelligence.
Front Psychiatry. 2023 Dec 21;14:1266548. doi: 10.3389/fpsyt.2023.1266548. eCollection 2023.
8
Predictive models for hospital readmission risk: A systematic review of methods.
Comput Methods Programs Biomed. 2018 Oct;164:49-64. doi: 10.1016/j.cmpb.2018.06.006. Epub 2018 Jun 28.
9
Predictors of 30-Day Unplanned Readmission After Carotid Artery Stenting Using Artificial Intelligence.
Adv Ther. 2021 Jun;38(6):2954-2972. doi: 10.1007/s12325-021-01709-7. Epub 2021 Apr 9.
10
Development and validation of an interpretable 3 day intensive care unit readmission prediction model using explainable boosting machines.
Front Med (Lausanne). 2022 Aug 23;9:960296. doi: 10.3389/fmed.2022.960296. eCollection 2022.

引用本文的文献

本文引用的文献

1
Application of machine learning in predicting hospital readmissions: a scoping review of the literature.
BMC Med Res Methodol. 2021 May 6;21(1):96. doi: 10.1186/s12874-021-01284-z.
2
Telemedicine Services During COVID-19: Considerations for Medically Underserved Populations.
J Rural Health. 2021 Jan;37(1):231-234. doi: 10.1111/jrh.12466. Epub 2020 Jul 2.
3
A Quality Improvement Intervention Bundle to Reduce 30-Day Pediatric Readmissions.
Pediatr Qual Saf. 2020 Feb 28;5(2):e264. doi: 10.1097/pq9.0000000000000264. eCollection 2020 Mar-Apr.
4
Mitigating the Impacts of the COVID-19 Pandemic Response on At-Risk Children.
Pediatrics. 2020 Jul;146(1). doi: 10.1542/peds.2020-0973. Epub 2020 Apr 21.
6
Prediction of Chronic Disease-Related Inpatient Prolonged Length of Stay Using Machine Learning Algorithms.
Healthc Inform Res. 2020 Jan;26(1):20-33. doi: 10.4258/hir.2020.26.1.20. Epub 2020 Jan 31.
7
Development and Validation of a Web-Based Pediatric Readmission Risk Assessment Tool.
Hosp Pediatr. 2020 Mar;10(3):246-256. doi: 10.1542/hpeds.2019-0241.
8
A Statistical-Learning Model for Unplanned 7-Day Readmission in Pediatrics.
Hosp Pediatr. 2020 Jan;10(1):43-51. doi: 10.1542/hpeds.2019-0122. Epub 2019 Dec 6.
9
Predicting Psychiatric Rehospitalization in Adolescents.
Adm Policy Ment Health. 2019 Nov;46(6):807-820. doi: 10.1007/s10488-019-00982-7.
10
Screening Children for Social Determinants of Health: A Systematic Review.
Pediatrics. 2019 Oct;144(4). doi: 10.1542/peds.2019-1622. Epub 2019 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验