Suppr超能文献

使用可解释增强机器开发并验证一个可解释的重症监护病房3天再入院预测模型。

Development and validation of an interpretable 3 day intensive care unit readmission prediction model using explainable boosting machines.

作者信息

Hegselmann Stefan, Ertmer Christian, Volkert Thomas, Gottschalk Antje, Dugas Martin, Varghese Julian

机构信息

Institute of Medical Informatics, University of Münster, Münster, Germany.

Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany.

出版信息

Front Med (Lausanne). 2022 Aug 23;9:960296. doi: 10.3389/fmed.2022.960296. eCollection 2022.

Abstract

BACKGROUND

Intensive care unit (ICU) readmissions are associated with mortality and poor outcomes. To improve discharge decisions, machine learning (ML) could help to identify patients at risk of ICU readmission. However, as many models are black boxes, dangerous properties may remain unnoticed. Widely used explanation methods also have inherent limitations. Few studies are evaluating inherently interpretable ML models for health care and involve clinicians in inspecting the trained model.

METHODS

An inherently interpretable model for the prediction of 3 day ICU readmission was developed. We used explainable boosting machines that learn modular risk functions and which have already been shown to be suitable for the health care domain. We created a retrospective cohort of 15,589 ICU stays and 169 variables collected between 2006 and 2019 from the University Hospital Münster. A team of physicians inspected the model, checked the plausibility of each risk function, and removed problematic ones. We collected qualitative feedback during this process and analyzed the reasons for removing risk functions. The performance of the final explainable boosting machine was compared with a validated clinical score and three commonly used ML models. External validation was performed on the widely used Medical Information Mart for Intensive Care version IV database.

RESULTS

The developed explainable boosting machine used 67 features and showed an area under the precision-recall curve of 0.119 ± 0.020 and an area under the receiver operating characteristic curve of 0.680 ± 0.025. It performed on par with state-of-the-art gradient boosting machines (0.123 ± 0.016, 0.665 ± 0.036) and outperformed the Simplified Acute Physiology Score II (0.084 ± 0.025, 0.607 ± 0.019), logistic regression (0.092 ± 0.026, 0.587 ± 0.016), and recurrent neural networks (0.095 ± 0.008, 0.594 ± 0.027). External validation confirmed that explainable boosting machines (0.221 ± 0.023, 0.760 ± 0.010) performed similarly to gradient boosting machines (0.232 ± 0.029, 0.772 ± 0.018). Evaluation of the model inspection showed that explainable boosting machines can be useful to detect and remove problematic risk functions.

CONCLUSIONS

We developed an inherently interpretable ML model for 3 day ICU readmission prediction that reached the state-of-the-art performance of black box models. Our results suggest that for low- to medium-dimensional datasets that are common in health care, it is feasible to develop ML models that allow a high level of human control without sacrificing performance.

摘要

背景

重症监护病房(ICU)再入院与死亡率及不良预后相关。为改善出院决策,机器学习(ML)有助于识别有ICU再入院风险的患者。然而,由于许多模型是黑箱模型,危险特性可能未被注意到。广泛使用的解释方法也有其固有限制。很少有研究评估用于医疗保健的内在可解释ML模型,且让临床医生参与检查训练好的模型。

方法

开发了一种用于预测3天ICU再入院的内在可解释模型。我们使用了可解释的增强机器,其学习模块化风险函数,且已被证明适用于医疗保健领域。我们创建了一个回顾性队列,包含2006年至2019年期间从明斯特大学医院收集的15589次ICU住院及169个变量。一组医生检查了该模型,检查每个风险函数的合理性,并去除有问题的风险函数。在此过程中我们收集了定性反馈,并分析了去除风险函数的原因。将最终的可解释增强机器的性能与一个经过验证的临床评分及三个常用的ML模型进行比较。在广泛使用的重症监护医学信息集市第四版数据库上进行了外部验证。

结果

所开发的可解释增强机器使用了67个特征,其精确召回率曲线下面积为0.119±0.020,受试者工作特征曲线下面积为0.680±0.025。其表现与最先进的梯度增强机器相当(0.123±0.016,0.665±0.036),且优于简化急性生理学评分II(0.084±0.025,0.607±0.019)、逻辑回归(0.092±0.026,0.587±0.016)和循环神经网络(0.095±0.008,0.594±0.027)。外部验证证实可解释增强机器(0.221±0.023,0.760±0.010)的表现与梯度增强机器相似(0.232±0.029,0.772±0.018)。对模型检查的评估表明,可解释增强机器有助于检测和去除有问题的风险函数。

结论

我们开发了一种用于3天ICU再入院预测的内在可解释ML模型,其达到了黑箱模型的最先进性能。我们的结果表明,对于医疗保健中常见的低至中等维度数据集,开发在不牺牲性能的情况下允许高度人工控制的ML模型是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a63e/9445989/80ed699fc6b1/fmed-09-960296-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验