Suppr超能文献

在具有时变介电泳力或光学力的芯片实验室设备中对布朗微粒子轨迹进行建模。

Modeling Brownian Microparticle Trajectories in Lab-on-a-Chip Devices with Time Varying Dielectrophoretic or Optical Forces.

作者信息

Zaman Mohammad Asif, Wu Mo, Padhy Punnag, Jensen Michael A, Hesselink Lambertus, Davis Ronald W

机构信息

Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.

Stanford Genome Technology Center, Department of Biochemistry, Stanford University, Palo Alto, CA 94304, USA.

出版信息

Micromachines (Basel). 2021 Oct 18;12(10):1265. doi: 10.3390/mi12101265.

Abstract

Lab-on-a-chip (LOC) devices capable of manipulating micro/nano-sized samples have spurred advances in biotechnology and chemistry. Designing and analyzing new and more advanced LOCs require accurate modeling and simulation of sample/particle dynamics inside such devices. In this work, we present a generalized computational physics model to simulate particle/sample trajectories under the influence of dielectrophoretic or optical forces inside LOC devices. The model takes into account time varying applied forces, Brownian motion, fluid flow, collision mechanics, and hindered diffusion caused by hydrodynamic interactions. We develop a numerical solver incorporating the aforementioned physics and use it to simulate two example cases: first, an optical trapping experiment, and second, a dielectrophoretic cell sorter device. In both cases, the numerical results are found to be consistent with experimental observations, thus proving the generality of the model. The numerical solver can simulate time evolution of the positions and velocities of an arbitrarily large number of particles simultaneously. This allows us to characterize and optimize a wide range of LOCs. The developed numerical solver is made freely available through a GitHub repository so that researchers can use it to develop and simulate new designs.

摘要

能够操纵微纳尺寸样本的芯片实验室(LOC)设备推动了生物技术和化学领域的发展。设计和分析新型及更先进的LOC需要对此类设备内部的样本/粒子动力学进行精确建模和模拟。在这项工作中,我们提出了一个广义计算物理模型,用于模拟LOC设备内部介电泳力或光力影响下的粒子/样本轨迹。该模型考虑了随时间变化的作用力、布朗运动、流体流动、碰撞力学以及由流体动力相互作用引起的受阻扩散。我们开发了一个包含上述物理过程的数值求解器,并用它模拟了两个示例情况:一是光镊实验,二是介电泳细胞分选设备。在这两种情况下,数值结果均与实验观测结果一致,从而证明了该模型的通用性。该数值求解器能够同时模拟任意数量粒子位置和速度的时间演化。这使我们能够对各种LOC进行表征和优化。通过GitHub仓库免费提供了所开发的数值求解器,以便研究人员能够使用它来开发和模拟新设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8185/8539052/c176dda808c8/micromachines-12-01265-g001.jpg

相似文献

2
Microparticle transport along a planar electrode array using moving dielectrophoresis.
J Appl Phys. 2021 Jul 21;130(3):034902. doi: 10.1063/5.0049126. Epub 2021 Jul 20.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
Dielectrophoresis of nanoparticles.
Electrophoresis. 2004 Nov;25(21-22):3625-32. doi: 10.1002/elps.200406092.
6
Controlled Transport of Individual Microparticles Using Dielectrophoresis.
Langmuir. 2023 Jan 10;39(1):101-110. doi: 10.1021/acs.langmuir.2c02235. Epub 2022 Dec 21.
7
Effect of geometry on dielectrophoretic trap stiffness in microparticle trapping.
Biomed Microdevices. 2021 Jun 29;23(3):33. doi: 10.1007/s10544-021-00570-3.
8
DC dielectrophoretic particle-particle interactions and their relative motions.
J Colloid Interface Sci. 2010 Jun 15;346(2):448-54. doi: 10.1016/j.jcis.2010.03.003. Epub 2010 Mar 6.
9
Resonances arising from hydrodynamic memory in Brownian motion.
Nature. 2011 Oct 5;478(7367):85-8. doi: 10.1038/nature10498.
10
Numerical Simulation of a Lab-on-Chip for Dielectrophoretic Separation of Circulating Tumor Cells.
Micromachines (Basel). 2023 Sep 15;14(9):1769. doi: 10.3390/mi14091769.

引用本文的文献

1
Polarization-Addressable Optical Movement of Plasmonic Nanoparticles and Hotspot Spin Vortices.
Nanomaterials (Basel). 2024 May 9;14(10):829. doi: 10.3390/nano14100829.
2
Editorial for the Special Issue on Micromachines for Dielectrophoresis, Volume II.
Micromachines (Basel). 2023 Mar 30;14(4):769. doi: 10.3390/mi14040769.
3
New Generation Dielectrophoretic-Based Microfluidic Device for Multi-Type Cell Separation.
Biosensors (Basel). 2023 Mar 24;13(4):418. doi: 10.3390/bios13040418.
4
Trapping of a Single Microparticle Using AC Dielectrophoresis Forces in a Microfluidic Chip.
Micromachines (Basel). 2023 Jan 8;14(1):159. doi: 10.3390/mi14010159.
5
Controlled Transport of Individual Microparticles Using Dielectrophoresis.
Langmuir. 2023 Jan 10;39(1):101-110. doi: 10.1021/acs.langmuir.2c02235. Epub 2022 Dec 21.
6
Dynamically controllable plasmonic tweezers using C-shaped nano-engravings.
Appl Phys Lett. 2022 Oct 31;121(18):181108. doi: 10.1063/5.0123268. Epub 2022 Nov 3.
8
Viscoelastic Particle Focusing and Separation in a Spiral Channel.
Micromachines (Basel). 2022 Feb 25;13(3):361. doi: 10.3390/mi13030361.

本文引用的文献

1
Temperature Effects on Optical Trapping Stability.
Micromachines (Basel). 2021 Aug 12;12(8):954. doi: 10.3390/mi12080954.
2
Microparticle transport along a planar electrode array using moving dielectrophoresis.
J Appl Phys. 2021 Jul 21;130(3):034902. doi: 10.1063/5.0049126. Epub 2021 Jul 20.
3
Characterization and Separation of Live and Dead Yeast Cells Using CMOS-Based DEP Microfluidics.
Micromachines (Basel). 2021 Mar 6;12(3):270. doi: 10.3390/mi12030270.
4
Simulation of nanoparticle transport and adsorption in a microfluidic lung-on-a-chip device.
Biomicrofluidics. 2020 Aug 21;14(4):044117. doi: 10.1063/5.0011353. eCollection 2020 Jul.
6
Combining DC and AC electric fields with deterministic lateral displacement for micro- and nano-particle separation.
Biomicrofluidics. 2019 Oct 23;13(5):054110. doi: 10.1063/1.5124475. eCollection 2019 Sep.
7
Near-field optical trapping in a non-conservative force field.
Sci Rep. 2019 Jan 24;9(1):649. doi: 10.1038/s41598-018-36653-0.
9
Fifty years of dielectrophoretic cell separation technology.
Biomicrofluidics. 2016 Jun 30;10(3):032801. doi: 10.1063/1.4954841. eCollection 2016 May.
10
Separation of tumor cells with dielectrophoresis-based microfluidic chip.
Biomicrofluidics. 2013 Jan 9;7(1):11803. doi: 10.1063/1.4774312. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验