Rachmadi Muhammad Febrian, Valdés-Hernández Maria Del C, Makin Stephen, Wardlaw Joanna, Skibbe Henrik
RIKEN Center for Brain Science, Brain Image Analysis Unit, Wako-shi, 351-0106, Japan.
Faculty of Computer Science, Universitas Indonesia, Depok, 16424, Indonesia.
Sci Rep. 2025 Jan 7;15(1):1208. doi: 10.1038/s41598-024-83128-6.
Predicting the evolution of white matter hyperintensities (WMH), a common feature in brain magnetic resonance imaging (MRI) scans of older adults (i.e., whether WMH will grow, remain stable, or shrink with time) is important for personalised therapeutic interventions. However, this task is difficult mainly due to the myriad of vascular risk factors and comorbidities that influence it, and the low specificity and sensitivity of the image intensities and textures alone for predicting WMH evolution. Given the predominantly vascular nature of WMH, in this study, we evaluate the impact of incorporating stroke lesion information to a probabilistic deep learning model to predict the evolution of WMH 1-year after the baseline image acquisition, taken soon after a mild stroke event, using T2-FLAIR brain MRI. The Probabilistic U-Net was chosen for this study due to its capability of simulating and quantifying the uncertainties involved in the prediction of WMH evolution. We propose to use an additional loss called volume loss to train our model, and incorporate stroke lesions information, an influential factor in WMH evolution. Our experiments showed that jointly segmenting the disease evolution map (DEM) of WMH and stroke lesions, improved the accuracy of the DEM representing WMH evolution. The combination of introducing the volume loss and joint segmentation of DEM of WMH and stroke lesions outperformed other model configurations with mean volumetric absolute error of 0.0092 ml (down from 1.7739 ml) and 0.47% improvement on average Dice similarity coefficient in shrinking, growing and stable WMH.
预测脑白质高信号(WMH)的演变对于个性化治疗干预很重要,脑白质高信号是老年人脑磁共振成像(MRI)扫描中的常见特征(即WMH是否会随着时间增长、保持稳定或缩小)。然而,这项任务很困难,主要是因为影响它的血管危险因素和合并症众多,而且仅靠图像强度和纹理来预测WMH演变的特异性和敏感性较低。鉴于WMH主要具有血管性质,在本研究中,我们使用T2-FLAIR脑MRI评估将中风病变信息纳入概率深度学习模型对预测轻度中风事件后不久采集的基线图像1年后WMH演变的影响。本研究选择概率U-Net是因为它能够模拟和量化WMH演变预测中涉及的不确定性。我们建议使用一种称为体积损失的额外损失来训练我们的模型,并纳入中风病变信息,中风病变信息是WMH演变中的一个影响因素。我们的实验表明,联合分割WMH和中风病变的疾病演变图(DEM),提高了表示WMH演变的DEM的准确性。引入体积损失与联合分割WMH和中风病变的DEM相结合的方法优于其他模型配置,平均体积绝对误差为0.0092毫升(从1.7739毫升下降),在萎缩、增长和稳定的WMH中平均骰子相似系数提高了0.47%。