Suppr超能文献

基于图谱的方法显著提高了从复杂宏基因组数据集中恢复抗生素抗性基因的能力。

Graph-Based Approaches Significantly Improve the Recovery of Antibiotic Resistance Genes From Complex Metagenomic Datasets.

作者信息

Shafranskaya Daria, Chori Alexander, Korobeynikov Anton

机构信息

Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, Sochi, Russia.

Center for Algorithmic Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia.

出版信息

Front Microbiol. 2021 Oct 6;12:714836. doi: 10.3389/fmicb.2021.714836. eCollection 2021.

Abstract

The lack of control over the usage of antibiotics leads to propagation of the microbial strains that are resistant to many antimicrobial substances. This situation is an emerging threat to public health and therefore the development of approaches to infer the presence of resistant strains is a topic of high importance. The resistome construction of an isolate microbial species could be considered a solved task with many state-of-the-art tools available. However, when it comes to the analysis of the resistome of a microbial community (metagenome), then there exist many challenges that influence the accuracy and precision of the predictions. For example, the prediction sensitivity of the existing tools suffer from the fragmented metagenomic assemblies due to interspecies repeats: usually it is impossible to recover conservative parts of antibiotic resistance genes that belong to different species that occur due to e.g., horizontal gene transfer or residing on a plasmid. The recent advances in development of new graph-based methods open a way to recover gene sequences of interest directly from the assembly graph without relying on cumbersome and incomplete metagenomic assembly. We present GraphAMR-a novel computational pipeline for recovery and identification of antibiotic resistance genes from fragmented metagenomic assemblies. The pipeline involves the alignment of profile hidden Markov models of target genes directly to the assembly graph of a metagenome with further dereplication and annotation of the results using state-of-the art tools. We show significant improvement of the quality of the results obtained (both in terms of accuracy and completeness) as compared to the analysis of an output of ordinary metagenomic assembly as well as different read mapping approaches. The pipeline is freely available from https://github.com/ablab/graphamr.

摘要

抗生素使用缺乏管控导致对多种抗菌物质具有抗性的微生物菌株得以传播。这种情况对公众健康构成了新出现的威胁,因此开发推断抗性菌株存在的方法是一个极为重要的课题。对于单个分离微生物物种的抗性组构建,可以认为是一个已解决的任务,有许多先进工具可供使用。然而,在分析微生物群落的抗性组(宏基因组)时,存在许多挑战会影响预测的准确性和精确性。例如,由于种间重复,现有工具的预测灵敏度受到宏基因组组装片段化的影响:通常无法找回因例如水平基因转移或存在于质粒上而属于不同物种的抗生素抗性基因的保守部分。基于新的图形方法开发的最新进展为直接从组装图中恢复感兴趣的基因序列开辟了一条途径,而无需依赖繁琐且不完整的宏基因组组装。我们展示了GraphAMR——一种用于从片段化宏基因组组装中恢复和鉴定抗生素抗性基因的新型计算流程。该流程包括将目标基因的轮廓隐马尔可夫模型直接与宏基因组的组装图进行比对,并使用先进工具对结果进行进一步的去重和注释。与普通宏基因组组装输出以及不同的读段映射方法的分析相比,我们展示了所获得结果的质量有显著提高(在准确性和完整性方面)。该流程可从https://github.com/ablab/graphamr免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b831/8528159/13f7fd2929e4/fmicb-12-714836-g0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验