Suppr超能文献

用于阿尔茨海默病(AD)诊断、疾病进展预测以及日本人群淀粉样β沉积的脑结构生物标志物的机器学习。

Machine learning of brain structural biomarkers for Alzheimer's disease (AD) diagnosis, prediction of disease progression, and amyloid beta deposition in the Japanese population.

作者信息

Shiino Akihiko, Shirakashi Yoshitomo, Ishida Manabu, Tanigaki Kenji

机构信息

Molecular Neuroscience Research Center Shiga University of Medical Science Shiga Japan.

Department of Neurology Shimane University Shimane Japan.

出版信息

Alzheimers Dement (Amst). 2021 Oct 14;13(1):e12246. doi: 10.1002/dad2.12246. eCollection 2021.

Abstract

INTRODUCTION

We developed machine learning (ML) designed to analyze structural brain magnetic resonance imaging (MRI), and trained it on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. In this study, we verified its utility in the Japanese population.

METHODS

A total of 535 participants were enrolled from the Japanese ADNI database, including 148 AD, 152 normal, and 235 mild cognitive impairment (MCI). Probability of AD was expressed as AD likelihood scores (ADLS).

RESULTS

The accuracy of AD diagnosis was 88.0% to 91.2%. The accuracy of predicting the disease progression in non-dementia participants over a 3-year observation was 76.0% to 79.3%. More than 90% of the participants with low ADLS did not progress to AD within 3 years. In the amyloid positron emission tomography (PET)-positive MCI, the hazard ratio of progression was 2.39 with low ADLS, and 5.77 with high ADLS. When high ADLS was defined as N+ and Pittsburgh compound B (PiB) PET positivity was defined as A+, the time to disease progression for 50% of MCI participants was 23.7 months in A+N+, whereas it was 52.3 months in A+N-.

CONCLUSION

These results support the feasibility of our ML for the diagnosis of AD and prediction of the disease progression.

摘要

引言

我们开发了用于分析脑部结构磁共振成像(MRI)的机器学习(ML),并在阿尔茨海默病神经成像计划(ADNI)数据库上对其进行训练。在本研究中,我们验证了其在日本人群中的效用。

方法

从日本ADNI数据库中招募了535名参与者,包括148名阿尔茨海默病(AD)患者、152名正常人以及235名轻度认知障碍(MCI)患者。AD的概率以AD可能性评分(ADLS)表示。

结果

AD诊断的准确率为88.0%至91.2%。在3年观察期内,预测非痴呆参与者疾病进展的准确率为76.0%至79.3%。ADLS低的参与者中,超过90%在3年内未进展为AD。在淀粉样蛋白正电子发射断层扫描(PET)阳性的MCI患者中,ADLS低时进展的风险比为2.39,ADLS高时为5.77。当将高ADLS定义为N+,匹兹堡化合物B(PiB)PET阳性定义为A+时,50%的MCI参与者疾病进展时间在A+N+组为23.7个月,而在A+N-组为52.3个月。

结论

这些结果支持了我们的ML用于AD诊断和疾病进展预测的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f0a/8515359/5cf236d8f702/DAD2-13-e12246-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验