Reith Fabian H, Mormino Elizabeth C, Zaharchuk Greg
Department of Radiology Stanford University Palo Alto California USA.
Department of Neurology and Neurological Sciences Stanford University Palo Alto California USA.
Alzheimers Dement (N Y). 2021 Oct 14;7(1):e12212. doi: 10.1002/trc2.12212. eCollection 2021.
In Alzheimer's disease, asymptomatic patients may have amyloid deposition, but predicting their progression rate remains a substantial challenge with implications for clinical trial enrollment. Here, we demonstrate an artificial intelligence approach to use baseline clinical information and images to predict changes in quantitative biomarkers of brain pathology on future images.
Patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) who underwent positron emission tomography (PET) with the amyloid radiotracer 18F-AV45 (florbetapir) were included. We identified important baseline PET image features using a deep convolutional neural network based on ResNet. These were combined with eight clinical, demographic, and genetic markers using a gradient-boosted decision tree (GBDT) algorithm to predict future quantitative standardized uptake value ratio (SUVR), an established biomarker of brain amyloid deposition. We used this model to better identify individuals with the highest positive change in amyloid deposition on future images and compared this to typical inclusion criteria for clinical trials. We also compared the model's performance to other methods such as multivariate linear regression and GBDT without imaging features.
Using 2577 PET scans from 1224 unique individuals, we showed that the GBDT with deep image features was significantly more accurate than the other approaches, reaching a root mean squared error of 0.0339 ± 0.0027 for future SUVR prediction. Using this approach, we could identify individuals with the highest 10% SUVR accumulation at rates 2- to 4-fold higher than by random pick or existing inclusion criteria.
Predicting quantitative biomarkers on future images using machine learning methods consisting of deep image features combined with clinical data may allow better targeting of treatments or enrollment in clinical trials.
在阿尔茨海默病中,无症状患者可能存在淀粉样蛋白沉积,但预测其进展速度仍然是一项重大挑战,这对临床试验入组具有重要意义。在此,我们展示了一种人工智能方法,利用基线临床信息和图像来预测未来图像上脑病理学定量生物标志物的变化。
纳入来自阿尔茨海默病神经影像倡议(ADNI)且接受了使用淀粉样蛋白放射性示踪剂18F-AV45(氟贝他吡)的正电子发射断层扫描(PET)的患者。我们使用基于ResNet的深度卷积神经网络识别重要的基线PET图像特征。这些特征与八个临床、人口统计学和基因标志物一起,使用梯度提升决策树(GBDT)算法来预测未来的定量标准化摄取值比率(SUVR),这是一种已确立的脑淀粉样蛋白沉积生物标志物。我们使用该模型更好地识别未来图像上淀粉样蛋白沉积正向变化最大的个体,并将其与临床试验的典型纳入标准进行比较。我们还将该模型的性能与其他方法进行比较,如多变量线性回归和不具有影像特征的GBDT。
使用来自1224名独特个体的2577次PET扫描,我们表明具有深度影像特征的GBDT比其他方法显著更准确,未来SUVR预测的均方根误差达到0.0339±0.0027。使用这种方法,我们能够以比随机选择或现有纳入标准高2至4倍的比率识别出SUVR积累最高的10%个体。
使用由深度影像特征与临床数据相结合的机器学习方法预测未来图像上的定量生物标志物,可能有助于更好地靶向治疗或进行临床试验入组。