Suppr超能文献

运用机器学习建立行急诊普通外科剖腹术患者死亡率的预测因子。

Using Machine Learning to Establish Predictors of Mortality in Patients Undergoing Laparotomy for Emergency General Surgical Conditions.

机构信息

Department of Anesthetics and Critical Care, Greys Hospital, University of KwaZulu-Natal, 201 Townbush road, Pietermaritzburg, 3200, South Africa.

Department of Surgery, University of KwaZulu-Natal, Durban, South Africa.

出版信息

World J Surg. 2022 Feb;46(2):339-346. doi: 10.1007/s00268-021-06360-5. Epub 2021 Oct 26.

Abstract

INTRODUCTION

Patients undergoing laparotomy for emergency general surgery (EGS) conditions, constitute a high-risk group with poor outcomes. These patients have a high prevalence of comorbidities. This study aims to identify patient factors, physiological and time-related factors, which place patients into a group at increased risk of mortality.

METHODOLOGY

In a retrospective analysis of all patients undergoing an emergency laparotomy at Greys Hospital from December 2012 to 2018, we used decision tree discrimination to identify high-risk groups.

RESULTS

Our cohort included 1461 patients undergoing a laparotomy for an EGS condition. The mortality rate was 12.4% (181). Nine hundred and ten patients (62.3%) had at least one known comorbidity on admission. There was a higher rate of comorbidities among those that died (154; 85.1%). Patient factors found to be associated with mortality were the age of 46 years or greater (p < 0.001), current tuberculosis (p < 0.001), hypertension (p = 0.014), at least one comorbidity (0.006), and malignancy (0.033). Significant physiological risk factors for mortality were base excess less than -6.8 mmol/L (p < 0.001), serum urea greater than 7.0 mmol/L (p < 0.001) and waiting time from admission to operation (p = 0.014). In patients with an enteric breach, those younger than 46 years and a Shock Index of more than 1.0 were high-risk. Patients without an enteric breach were high-risk if operative duration exceeded 90 min (p = 0.004) and serum urea exceeding 7 mmol/dl (p = 0.016).

CONCLUSION

In EGS patients, patient factors as well as physiological factors place patients into a high-risk group. Identifying a high-risk group should prompt consideration for an adjusted approach that ameliorates outcomes.

摘要

简介

接受剖腹手术治疗的急腹症(EGS)患者构成了预后不良的高危人群。这些患者合并症的发病率很高。本研究旨在确定使患者处于高死亡风险的患者因素、生理和时间相关因素。

方法

在对 2012 年 12 月至 2018 年期间在格雷医院接受紧急剖腹手术的所有患者进行回顾性分析中,我们使用决策树判别法来识别高危人群。

结果

我们的队列包括 1461 例接受剖腹手术治疗 EGS 病症的患者。死亡率为 12.4%(181 例)。910 例(62.3%)患者入院时至少有一种已知的合并症。死亡患者的合并症发病率更高(154 例;85.1%)。与死亡率相关的患者因素是年龄为 46 岁或以上(p<0.001)、现患结核病(p<0.001)、高血压(p=0.014)、至少有一种合并症(p=0.006)和恶性肿瘤(p=0.033)。与死亡率相关的显著生理危险因素是碱剩余小于-6.8mmol/L(p<0.001)、血清尿素大于 7.0mmol/L(p<0.001)和从入院到手术的等待时间(p=0.014)。对于肠破裂的患者,年龄小于 46 岁和休克指数大于 1.0 的患者为高危人群。对于无肠破裂的患者,如果手术时间超过 90 分钟(p=0.004)和血清尿素超过 7mmol/dl(p=0.016),则为高危人群。

结论

在 EGS 患者中,患者因素以及生理因素使患者处于高风险组。确定高危人群应促使考虑采取改善预后的调整方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验