Suppr超能文献

人工智能驱动的肌少症预后生物标志物发现。

Artificial-intelligence-driven discovery of prognostic biomarker for sarcopenia.

机构信息

Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.

Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.

出版信息

J Cachexia Sarcopenia Muscle. 2021 Dec;12(6):2220-2230. doi: 10.1002/jcsm.12840. Epub 2021 Oct 26.

Abstract

BACKGROUND

Sarcopenia is defined as muscle wasting, characterized by a progressive loss of muscle mass and function due to ageing. Diagnosis of sarcopenia typically involves both muscle imaging and the physical performance of people exhibiting signs of muscle weakness. Despite its worldwide prevalence, a molecular method for accurately diagnosing sarcopenia has not been established.

METHODS

We develop an artificial intelligence (AI) diagnosis model of sarcopenia using a published transcriptome dataset comprising patients from multiple ethnicities. For the AI model for sarcopenia diagnosis, we use a transcriptome database comprising 17 339 genes from 118 subjects. Among the 17 339 genes, we select 27 features as the model inputs. For feature selection, we use a random forest, extreme gradient boosting and adaptive boosting. Using the top 27 features, we propose a four-layer deep neural network, named DSnet-v1, for sarcopenia diagnosis.

RESULTS

Among isolated testing datasets, DSnet-v1 provides high sensitivity (100%), specificity (94.12%), accuracy (95.83%), balanced accuracy (97.06%) and area under receiver operating characteristics (0.99). To extend the number of patient data, we develop a web application (http://sarcopeniaAI.ml/), where the model can be accessed unrestrictedly to diagnose sarcopenia if the transcriptome is available. A focused analysis of the top 27 genes for their differential or co-expression with other genes implied the potential existence of race-specific factors for sarcopenia, suggesting the possibility of identifying causal factors of sarcopenia when a more extended dataset is provided.

CONCLUSIONS

Our new AI model, DSnet-v1, accurately diagnoses sarcopenia and is currently available publicly to assist healthcare providers in diagnosing and treating sarcopenia.

摘要

背景

肌少症是指肌肉减少,其特征是由于衰老导致肌肉质量和功能逐渐丧失。肌少症的诊断通常需要肌肉影像学检查和有肌肉无力迹象的人的身体表现。尽管肌少症在全球范围内普遍存在,但尚未建立一种用于准确诊断肌少症的分子方法。

方法

我们使用包含来自多个种族的患者的已发表转录组数据集开发肌少症的人工智能(AI)诊断模型。对于肌少症诊断的 AI 模型,我们使用包含 118 个个体的 17339 个基因的转录组数据库。在 17339 个基因中,我们选择 27 个特征作为模型输入。对于特征选择,我们使用随机森林、极端梯度提升和自适应提升。使用前 27 个特征,我们提出了一个名为 DSnet-v1 的四层深度神经网络,用于肌少症诊断。

结果

在独立测试数据集中,DSnet-v1 提供了高灵敏度(100%)、特异性(94.12%)、准确性(95.83%)、平衡准确性(97.06%)和接收者操作特征曲线下的面积(0.99)。为了扩展患者数据的数量,我们开发了一个网络应用程序(http://sarcopeniaAI.ml/),如果可以获得转录组,则可以不受限制地访问该模型来诊断肌少症。对前 27 个基因进行的重点分析表明,它们与其他基因的差异或共表达,暗示了肌少症存在特定种族的因素,这表明当提供更广泛的数据集时,可能会确定肌少症的因果因素。

结论

我们的新型 AI 模型 DSnet-v1 可以准确诊断肌少症,目前可供公众使用,以帮助医疗保健提供者诊断和治疗肌少症。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验