Suppr超能文献

《1 型糖尿病患者中 GlucoMen Day CGM 系统准确性评估:一项初步研究》。

Accuracy Assessment of the GlucoMen Day CGM System in Individuals with Type 1 Diabetes: A Pilot Study.

机构信息

Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.

出版信息

Biosensors (Basel). 2022 Feb 9;12(2):106. doi: 10.3390/bios12020106.

Abstract

The aim of this study was to evaluate the accuracy and usability of a novel continuous glucose monitoring (CGM) system designed for needle-free insertion and reduced environmental impact. We assessed the sensor performance of two GlucoMen Day CGM systems worn simultaneously by eight participants with type 1 diabetes. Self-monitoring of blood glucose (SMBG) was performed regularly over 14 days at home. Participants underwent two standardized, 5-h meal challenges at the research center with frequent plasma glucose (PG) measurements using a laboratory reference (YSI) instrument. When comparing CGM to PG, the overall mean absolute relative difference (MARD) was 9.7 [2.6-14.6]%. The overall MARD for CGM vs. SMBG was 13.1 [3.5-18.6]%. The consensus error grid (CEG) analysis showed 98% of both CGM/PG and CGM/SMBG pairs in the clinically acceptable zones A and B. The analysis confirmed that GlucoMen Day CGM meets the clinical requirements for state-of-the-art CGM. In addition, the needle-free insertion technology is well tolerated by users and reduces medical waste compared to conventional CGM systems.

摘要

本研究旨在评估一款新型无针式插入、降低环境影响的连续血糖监测(CGM)系统的准确性和可用性。我们评估了 8 名 1 型糖尿病患者同时佩戴的两款 GlucoMen Day CGM 系统的传感器性能。参与者在家中进行了为期 14 天的定期自我血糖监测(SMBG)。参与者在研究中心进行了两次标准化的 5 小时进餐挑战,使用实验室参考(YSI)仪器频繁测量血浆血糖(PG)。将 CGM 与 PG 进行比较时,总体平均绝对相对差异(MARD)为 9.7 [2.6-14.6]%。CGM 与 SMBG 的总体 MARD 为 13.1 [3.5-18.6]%。共识误差网格(CEG)分析显示,98%的 CGM/PG 和 CGM/SMBG 对在临床可接受的 A 和 B 区。分析证实,GlucoMen Day CGM 满足了最先进 CGM 的临床要求。此外,与传统的 CGM 系统相比,无针插入技术具有更好的用户耐受性,并减少了医疗废物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5595/8869704/0743080939d0/biosensors-12-00106-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验