Suppr超能文献

迈向数字近距离追踪应用的通用性能和有效性术语。

Toward a Common Performance and Effectiveness Terminology for Digital Proximity Tracing Applications.

作者信息

Lueks Wouter, Benzler Justus, Bogdanov Dan, Kirchner Göran, Lucas Raquel, Oliveira Rui, Preneel Bart, Salathé Marcel, Troncoso Carmela, von Wyl Viktor

机构信息

Security and Privacy Engineering Laboratory, School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Robert Koch Institute, Berlin, Germany.

出版信息

Front Digit Health. 2021 Aug 5;3:677929. doi: 10.3389/fdgth.2021.677929. eCollection 2021.

Abstract

Digital proximity tracing (DPT) for Sars-CoV-2 pandemic mitigation is a complex intervention with the primary goal to notify app users about possible risk exposures to infected persons. DPT not only relies on the technical functioning of the proximity tracing application and its backend server, but also on seamless integration of health system processes such as laboratory testing, communication of results (and their validation), generation of notification codes, manual contact tracing, and management of app-notified users. Policymakers and DPT operators need to know whether their system works as expected in terms of speed or yield (performance) and whether DPT is making an effective contribution to pandemic mitigation (also in comparison to and beyond established mitigation measures, particularly manual contact tracing). Thereby, performance and effectiveness are not to be confused. Not only are there conceptual differences but also diverse data requirements. For example, comparative effectiveness measures may require information generated outside the DPT system, e.g., from manual contact tracing. This article describes differences between performance and effectiveness measures and attempts to develop a terminology and classification system for DPT evaluation. We discuss key aspects for critical assessments of whether the integration of additional data measurements into DPT apps may facilitate understanding of performance and effectiveness of planned and deployed DPT apps. Therefore, the terminology and a classification system may offer some guidance to DPT system operators regarding which measurements to prioritize. DPT developers and operators may also make conscious decisions to integrate measures for epidemic monitoring but should be aware that this introduces a secondary purpose to DPT. Ultimately, the integration of further information (e.g., regarding exact exposure time) into DPT involves a trade-off between data granularity and linkage on the one hand, and privacy on the other. More data may lead to better epidemiological information but may also increase the privacy risks associated with the system, and thus decrease public DPT acceptance. Decision-makers should be aware of the trade-off and take it into account when planning and developing DPT systems or intending to assess the added value of DPT relative to the existing contact tracing systems.

摘要

用于缓解新冠疫情的数字近距离追踪(DPT)是一项复杂的干预措施,其主要目标是通知应用程序用户可能接触到感染者的风险。DPT不仅依赖于近距离追踪应用程序及其后端服务器的技术功能,还依赖于卫生系统流程的无缝整合,如实验室检测、结果传达(及其验证)、通知代码生成、人工接触者追踪以及应用程序通知用户的管理。政策制定者和DPT运营商需要了解他们的系统在速度或产量(性能)方面是否按预期运行,以及DPT是否正在为缓解疫情做出有效贡献(与既定的缓解措施相比,以及在既定措施之外,特别是与人工接触者追踪相比)。因此,性能和有效性不能混淆。不仅存在概念上的差异,而且数据要求也各不相同。例如,比较有效性措施可能需要DPT系统外部生成的信息,例如来自人工接触者追踪的信息。本文描述了性能和有效性措施之间的差异,并试图为DPT评估制定术语和分类系统。我们讨论了关键方面,以批判性评估将额外数据测量整合到DPT应用程序中是否有助于理解计划和部署的DPT应用程序的性能和有效性。因此,术语和分类系统可能会为DPT系统运营商提供一些指导,说明应优先考虑哪些测量。DPT开发者和运营商也可能会有意识地决定整合用于疫情监测的措施,但应意识到这为DPT引入了第二个目的。最终,将更多信息(例如关于确切接触时间)整合到DPT中涉及到一方面数据粒度和关联性与另一方面隐私之间的权衡。更多的数据可能会带来更好的流行病学信息,但也可能增加与该系统相关的隐私风险,从而降低公众对DPT的接受度。决策者应意识到这种权衡,并在规划和开发DPT系统或打算评估DPT相对于现有接触者追踪系统的附加值时予以考虑。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验