Ma Huifang, Qian Qi, Qin Biao, Wan Zhong, Wu Ruixia, Zhao Bei, Zhang Hongmei, Zhang Zucheng, Li Jia, Zhang Zhengwei, Li Bo, Wang Lin, Duan Xidong
Hunan Key Laboratory of Two-Dimensional Materials and State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China.
Adv Sci (Weinh). 2022 Jan;9(1):e2103507. doi: 10.1002/advs.202103507. Epub 2021 Oct 28.
Thickness-dependent chemical and physical properties have gained tremendous interest since the emergence of two-dimensional (2D) materials. Despite attractive prospects, the thickness-controlled synthesis of ultrathin nanosheets remains an outstanding challenge. Here, a chemical vapor deposition (CVD) route is reported to controllably synthesize high-quality PtSe nanosheets with tunable thickness and explore their thickness-dependent electronic and magnetotransport properties. Raman spectroscopic studies demonstrate all E , A , A , and E modes are red shift in thicker nanosheets. Electrical measurements demonstrate the 1.7 nm thick nanosheet is a semiconductor with room temperature field-effect mobility of 66 cm V s and on/off ratio of 10 . The 2.3-3.8 nm thick nanosheets show slightly gated modulation with high field-effect mobility up to 324 cm V s at room-temperature. When the thickness is over 3.8 nm, the nanosheets show metallic behavior with conductivity and breakdown current density up to 6.8 × 10 S m and 6.9 × 10 A cm , respectively. Interestingly, magnetoresistance (MR) studies reveal magnetic orders exist in this intrinsically non-magnetic material system, as manifested by the thickness-dependent Kondo effect, where both metal to insulator transition and negative MR appear upon cooling. Together, these studies suggest that PtSe is an intriguing system for both developing novel functional electronics and conducting fundamental 2D magnetism study.
自从二维(2D)材料出现以来,与厚度相关的化学和物理性质引起了人们极大的兴趣。尽管前景诱人,但超薄纳米片的厚度可控合成仍然是一个突出的挑战。在此,报道了一种化学气相沉积(CVD)路线,用于可控地合成具有可调厚度的高质量PtSe纳米片,并探索其与厚度相关的电子和磁输运性质。拉曼光谱研究表明,在较厚的纳米片中,所有E、A、A和E模式均发生红移。电学测量表明,1.7纳米厚的纳米片是一种半导体,室温场效应迁移率为66厘米²伏⁻¹秒⁻¹,开/关比为10⁵。2.3 - 3.8纳米厚的纳米片表现出轻微的门控调制,室温下高场效应迁移率高达324厘米²伏⁻¹秒⁻¹。当厚度超过3.8纳米时,纳米片表现出金属行为,电导率和击穿电流密度分别高达6.8×10⁴西门子米⁻¹和6.9×10⁶安厘米⁻²。有趣的是,磁电阻(MR)研究表明,在这个本征非磁性材料系统中存在磁有序,这表现为与厚度相关的近藤效应,即冷却时会出现金属到绝缘体的转变和负磁电阻。总之,这些研究表明,PtSe对于开发新型功能电子器件和进行基础二维磁性研究都是一个引人入胜的系统。