Suppr超能文献

通过一种新颖的结构化稀疏典型相关分析方法来识别阿尔茨海默病的生物标志物。

Identifying Biomarkers of Alzheimer's Disease via a Novel Structured Sparse Canonical Correlation Analysis Approach.

机构信息

College of Information Engineering, Shanghai Maritime University, 1550 Haigang Ave, Shanghai, 201306, People's Republic of China.

出版信息

J Mol Neurosci. 2022 Feb;72(2):323-335. doi: 10.1007/s12031-021-01915-6. Epub 2021 Sep 27.

Abstract

Using correlation analysis to study the potential connection between brain genetics and imaging has become an effective method to understand neurodegenerative diseases. Sparse canonical correlation analysis (SCCA) makes it possible to study high-dimensional genetic information. The traditional SCCA methods can only process single-modal genetic and image data, which to some extent weaken the close connection of the brain's biological network. In some recently proposed multimodal SCCA methods, due to the limitations of penalty items, the pre-processed data needs to be further filtered to make the dimensions uniform, which may destroy the potential association of data in the same modal. In this research, in order to combine data between different modalities and to ensure that the chain relationship or graph network relationship within the same modality will not be destroyed, the original generalized fused lasso penalty was replaced with the fused pairwise group lasso (FGL) and the graph-guided pairwise group lasso (GGL) based on the method of joint sparse canonical correlation analysis (JSCCA). We used prior knowledge to construct a supervised bivariate learning model and use linear regression to select quantitative traits (QTs) of images that are strongly correlated with the Mini-mental State Examination (MMSE) scores. Compared with FGL-SCCA, the model we constructed obtained a higher gene-ROI correlation coefficient and identified more significant biomarkers, providing a theoretical basis for further understanding the complex pathology of neurodegenerative diseases.

摘要

利用相关分析研究脑遗传学与影像学之间的潜在联系,已成为了解神经退行性疾病的有效方法。稀疏典型相关分析(SCCA)使得研究高维遗传信息成为可能。传统的 SCCA 方法只能处理单模态遗传和图像数据,这在一定程度上削弱了大脑生物网络的紧密联系。在最近提出的一些多模态 SCCA 方法中,由于惩罚项的限制,预处理后的数据需要进一步过滤以实现维度统一,这可能会破坏同一模态中数据的潜在关联。在这项研究中,为了结合不同模态的数据,并确保同一模态内的链关系或图网络关系不会被破坏,我们用基于联合稀疏典型相关分析(JSCCA)的融合成对组套索(FGL)和图引导的成对组套索(GGL)代替了原始广义融合套索惩罚。我们利用先验知识构建了一个有监督的双变量学习模型,并使用线性回归选择与 Mini-mental State Examination(MMSE)评分强相关的图像的定量特征(QTs)。与 FGL-SCCA 相比,我们构建的模型获得了更高的基因-ROI 相关系数,并识别出更多显著的生物标志物,为进一步了解神经退行性疾病的复杂病理提供了理论依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验