Suppr超能文献

使用希尔伯特曲线解码放射图像上的肿瘤内空间异质性。

Decoding intra-tumoral spatial heterogeneity on radiological images using the Hilbert curve.

作者信息

Wang Lu, Xu Nan, Song Jiangdian

机构信息

School of Health Management, China Medical University, No. 77 Puhe Rd, Shenbei District, Shenyang, 110122, Liaoning, China.

出版信息

Insights Imaging. 2021 Oct 30;12(1):154. doi: 10.1186/s13244-021-01100-8.

Abstract

BACKGROUND

Current intra-tumoral heterogeneous feature extraction in radiology is limited to the use of a single slice or the region of interest within a few context-associated slices, and the decoding of intra-tumoral spatial heterogeneity using whole tumor samples is rare. We aim to propose a mathematical model of space-filling curve-based spatial correspondence mapping to interpret intra-tumoral spatial locality and heterogeneity.

METHODS

A Hilbert curve-based approach was employed to decode and visualize intra-tumoral spatial heterogeneity by expanding the tumor volume to a two-dimensional (2D) matrix in voxels while preserving the spatial locality of the neighboring voxels. The proposed method was validated using three-dimensional (3D) volumes constructed from lung nodules from the LIDC-IDRI dataset, regular axial plane images, and 3D blocks.

RESULTS

Dimensionality reduction of the Hilbert volume with a single regular axial plane image showed a sparse and scattered pixel distribution on the corresponding 2D matrix. However, for 3D blocks and lung tumor inside the volume, the dimensionality reduction to the 2D matrix indicated regular and concentrated squares and rectangles. For classification into benign and malignant masses using lung nodules from the LIDC-IDRI dataset, the Inception-V4 indicated that the Hilbert matrix images improved accuracy (85.54% vs. 73.22%, p < 0.001) compared to the original CT images of the test dataset.

CONCLUSIONS

Our study indicates that Hilbert curve-based spatial correspondence mapping is promising for decoding intra-tumoral spatial heterogeneity of partial or whole tumor samples on radiological images. This spatial-locality-preserving approach for voxel expansion enables existing radiomics and convolution neural networks to filter structured and spatially correlated high-dimensional intra-tumoral heterogeneity.

摘要

背景

目前放射学中肿瘤内异质性特征提取仅限于使用单个切片或少数几个上下文相关切片内的感兴趣区域,而使用整个肿瘤样本对肿瘤内空间异质性进行解码的情况很少见。我们旨在提出一种基于空间填充曲线的空间对应映射数学模型,以解释肿瘤内的空间局部性和异质性。

方法

采用基于希尔伯特曲线的方法,通过将肿瘤体积扩展为体素中的二维(2D)矩阵,同时保留相邻体素的空间局部性,来解码和可视化肿瘤内空间异质性。使用从LIDC-IDRI数据集中的肺结节构建的三维(3D)体积、常规轴向平面图像和3D块对所提出的方法进行验证。

结果

用单个常规轴向平面图像对希尔伯特体积进行降维,在相应的二维矩阵上显示出稀疏且分散的像素分布。然而,对于体积内的3D块和肺肿瘤,降维到二维矩阵显示出规则且集中的正方形和矩形。使用LIDC-IDRI数据集中的肺结节对良性和恶性肿块进行分类时,Inception-V4表明,与测试数据集的原始CT图像相比,希尔伯特矩阵图像提高了准确率(85.54%对73.22%,p<0.001)。

结论

我们的研究表明,基于希尔伯特曲线的空间对应映射在解码放射图像上部分或整个肿瘤样本的肿瘤内空间异质性方面很有前景。这种用于体素扩展的保留空间局部性的方法使现有的放射组学和卷积神经网络能够过滤结构化且空间相关的高维肿瘤内异质性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be26/8557226/512bbd55591e/13244_2021_1100_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验