Suppr超能文献

动态遍历性DDA揭示了时间序列中的因果结构。

Dynamical ergodicity DDA reveals causal structure in time series.

作者信息

Lainscsek Claudia, Cash Sydney S, Sejnowski Terrence J, Kurths Jürgen

机构信息

Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.

Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.

出版信息

Chaos. 2021 Oct;31(10):103108. doi: 10.1063/5.0063724.

Abstract

Determining synchronization, causality, and dynamical similarity in highly complex nonlinear systems like brains is challenging. Although distinct, these measures are related by the unknown deterministic structure of the underlying dynamical system. For two systems that are not independent on each other, either because they result from a common process or they are already synchronized, causality measures typically fail. Here, we introduce dynamical ergodicity to assess dynamical similarity between time series and then combine this new measure with cross-dynamical delay differential analysis to estimate causal interactions between time series. We first tested this approach on simulated data from coupled Rössler systems where ground truth was known. We then applied it to intracranial electroencephalographic data from patients with epilepsy and found distinct dynamical states that were highly predictive of epileptic seizures.

摘要

在诸如大脑这样高度复杂的非线性系统中确定同步性、因果关系和动力学相似性具有挑战性。尽管这些度量各不相同,但它们通过基础动力学系统未知的确定性结构相互关联。对于两个并非相互独立的系统,要么因为它们源自共同过程,要么因为它们已经同步,因果关系度量通常会失效。在此,我们引入动力学遍历性来评估时间序列之间的动力学相似性,然后将这一新度量与交叉动力学延迟微分分析相结合,以估计时间序列之间的因果相互作用。我们首先在耦合罗塞尔系统的模拟数据上测试了这种方法,其中已知真实情况。然后我们将其应用于癫痫患者的颅内脑电图数据,发现了对癫痫发作具有高度预测性的不同动力学状态。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验