Amity Institute of Integrative Sciences and Health, Amity University Gurgaon, Gurgaon 122413, Haryana, India.
Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
FEMS Microbiol Lett. 2021 Oct 26;368(19). doi: 10.1093/femsle/fnab135.
Spliceosomal introns are noncoding sequences that are spliced from pre-mRNA. They are ubiquitous in eukaryotic genomes, although the average number of introns per gene varies considerably between different eukaryotic species. Fungi are diverse in terms of intron numbers ranging from 4% to 99% genes with introns. Alternative splicing is one of the most common modes of posttranscriptional regulation in eukaryotes, giving rise to multiple transcripts from a single pre-mRNA and is widespread in metazoans and drives extensive proteome diversity. Earlier, alternative splicing was considered to be rare in fungi, but recently, increasing numbers of studies have revealed that alternative splicing is also widespread in fungi and has been implicated in the regulation of fungal growth and development, protein localization and the improvement of survivability, likely underlying their unique capacity to adapt to changing environmental conditions. However, the role of alternative splicing in pathogenicity and development of drug resistance is only recently gaining attention. In this review, we describe the intronic landscape in fungi. We also present in detail the newly discovered functions of alternative splicing in various cellular processes and outline areas particularly in pathogenesis and clinical drug resistance for future studies that could lead to the development of much needed new therapeutics.
剪接体内含子是非编码序列,它们从前体 mRNA 中被剪接出来。它们普遍存在于真核生物基因组中,尽管不同真核生物物种中每个基因的内含子数量差异很大。真菌在内含子数量上具有多样性,范围从 4%到 99%的基因具有内含子。可变剪接是真核生物中最常见的转录后调控方式之一,它从单个前体 mRNA 产生多个转录本,在后生动物中广泛存在,并驱动广泛的蛋白质组多样性。早期,可变剪接被认为在真菌中很少见,但最近越来越多的研究表明,可变剪接在真菌中也很普遍,并且与真菌的生长和发育、蛋白质定位和提高生存能力的调节有关,可能是它们适应不断变化的环境条件的独特能力的基础。然而,可变剪接在致病性和耐药性发展中的作用直到最近才引起关注。在这篇综述中,我们描述了真菌中的内含子景观。我们还详细介绍了可变剪接在各种细胞过程中的新发现功能,并概述了在发病机制和临床耐药性方面特别值得未来研究的领域,这可能会导致急需的新疗法的开发。