Suppr超能文献

用于全局优化的类帕累托序贯抽样启发式方法。

Pareto-like sequential sampling heuristic for global optimisation.

作者信息

Shaqfa Mahmoud, Beyer Katrin

机构信息

Earthquake Engineering and Structural Dynamics Laboratory (EESD), School of Architecture, Civil and Environmental Engineering (ENAC), École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

出版信息

Soft comput. 2021;25(14):9077-9096. doi: 10.1007/s00500-021-05853-8. Epub 2021 May 29.

Abstract

In this paper, we propose a simple global optimisation algorithm inspired by Pareto's principle. This algorithm samples most of its solutions within prominent search domains and is equipped with a self-adaptive mechanism to control the dynamic tightening of the prominent domains while the greediness of the algorithm increases over time (iterations). Unlike traditional metaheuristics, the proposed method has no direct mutation- or crossover-like operations. It depends solely on the sequential random sampling that can be used in diversification and intensification processes while keeping the information-flow between generations and the structural bias at a minimum. By using a simple topology, the algorithm avoids premature convergence by sampling new solutions every generation. A simple theoretical derivation revealed that the exploration of this approach is unbiased and the rate of the diversification is constant during the runtime. The trade-off balance between the diversification and the intensification is explained theoretically and experimentally. This proposed approach has been benchmarked against standard optimisation problems as well as a selected set of simple and complex engineering applications. We used 26 standard benchmarks with different properties that cover most of the optimisation problems' nature, three traditional engineering problems, and one real complex engineering problem from the state-of-the-art literature. The algorithm performs well in finding global minima for nonconvex and multimodal functions, especially with high dimensional problems and it was found very competitive in comparison with the recent algorithmic proposals. Moreover, the algorithm outperforms and scales better than recent algorithms when it is benchmarked under a limited number of iterations for the composite CEC2017 problems. The design of this algorithm is kept simple so it can be easily coupled or hybridised with other search paradigms. The code of the algorithm is provided in C++14, Python3.7, and Octave (Matlab).

摘要

在本文中,我们提出了一种受帕累托原理启发的简单全局优化算法。该算法在显著搜索域内对其大部分解进行采样,并配备了一种自适应机制,以在算法的贪婪程度随时间(迭代)增加时控制显著域的动态收紧。与传统元启发式算法不同,该方法没有直接的类似变异或交叉的操作。它仅依赖于顺序随机采样,可用于多样化和强化过程,同时将代与代之间的信息流和结构偏差保持在最低限度。通过使用简单的拓扑结构,该算法通过每一代采样新解来避免过早收敛。一个简单的理论推导表明,这种方法的探索是无偏差的,并且在运行时多样化的速率是恒定的。从理论和实验两方面解释了多样化与强化之间的权衡平衡。该方法已针对标准优化问题以及一组选定的简单和复杂工程应用进行了基准测试。我们使用了26个具有不同特性的标准基准测试,这些基准测试涵盖了大多数优化问题的性质、三个传统工程问题以及一篇最新文献中的一个实际复杂工程问题。该算法在寻找非凸和多峰函数的全局最小值方面表现良好,尤其是对于高维问题,并且与最近提出的算法相比具有很强的竞争力。此外,在针对复合CEC2017问题在有限次数的迭代下进行基准测试时,该算法的性能优于最近的算法且扩展性更好。该算法的设计保持简单,因此可以很容易地与其他搜索范式进行耦合或混合。该算法的代码以C++14、Python3.7和Octave(Matlab)提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/647b/8550146/db894d4925c1/500_2021_5853_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验