Suppr超能文献

利用地理信息系统技术对阿曼境内新冠病毒传播情况的时空评估

Spatiotemporal Assessment of COVID-19 Spread over Oman Using GIS Techniques.

作者信息

Al-Kindi Khalifa M, Alkharusi Amira, Alshukaili Duhai, Al Nasiri Noura, Al-Awadhi Talal, Charabi Yassine, El Kenawy Ahmed M

机构信息

Geography Department, Sultan Qaboos University, Muscat, Oman.

Physiology Department, Colege of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.

出版信息

Earth Syst Environ. 2020;4(4):797-811. doi: 10.1007/s41748-020-00194-2. Epub 2020 Dec 8.

Abstract

UNLABELLED

Coronavirus disease (COVID-19), caused by acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a worldwide challenge effecting millions of people in more than 210 countries, including the Sultanate of Oman (Oman). Spatiotemporal analysis was adopted to explore the spatial patterns of the spread of COVID-19 during the period from 29th April to 30th June 2020. Our assessment was made using five geospatial techniques within a Geographical Information System (GIS) context, including a weighted mean centre (WMC), standard deviational ellipses, Moran's autocorrelation coefficient, Getis-Ord General-G high/low clustering, and Getis-Ord statistic. The Moran's -/- statistics proved that COVID-19 cases in datasets (numbers of cases) were clustered throughout the study period. The Moran's and scores were above the 2.25 threshold (a confidence level above 95%), ranging from 2274 cases on 29th April to 40,070 cases on 30th June 2020. The results of showed varying rates of infections, with a large spatial variability between the different wilayats (district). The epidemic situation in some wilayats, such as Mutrah, As-Seeb, and Bowsher in the Muscat Governorate, was more severe, with score higher than 5, and the current transmission still presents an increasing trend. This study indicated that the directional pattern of COVID-19 cases has moved from northeast to northwest and southwest, with the total impacted region increasing over time. Also, the results indicate that the rate of COVID-19 infections is higher in the most populated areas. The findings of this paper provide a solid basis for future study by investigating the most resolute hotspots in more detail and may help decision-makers identify targeted zones for alleviation plans.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s41748-020-00194-2.

摘要

未标注

由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的冠状病毒病(COVID-19)是一项全球性挑战,影响着210多个国家的数百万人,包括阿曼苏丹国(阿曼)。采用时空分析方法探究了2020年4月29日至6月30日期间COVID-19的传播空间模式。我们在地理信息系统(GIS)环境下使用了五种地理空间技术进行评估,包括加权平均中心(WMC)、标准差椭圆、莫兰自相关系数、Getis-Ord通用G高/低聚类以及Getis-Ord统计量。莫兰指数统计证明,数据集中的COVID-19病例(病例数)在整个研究期间呈聚集状态。莫兰指数和得分高于2.25阈值(置信水平高于95%),从4月29日的2274例到2020年6月30日的40070例不等。结果显示感染率各不相同,不同省(区)之间存在很大的空间变异性。一些省,如马斯喀特省的穆特拉、阿斯赛卜和鲍舍尔,疫情更为严重,得分高于5,目前的传播仍呈上升趋势。这项研究表明,COVID-19病例的方向模式已从东北向西北和西南转移,随着时间推移,受影响的总面积在增加。此外,结果表明,人口最密集地区的COVID-19感染率较高。本文的研究结果通过更详细地调查最坚决的热点地区,为未来的研究提供了坚实的基础,并可能帮助决策者确定缓解计划的目标区域。

补充信息

在线版本包含可在10.1007/s41748-020-00194-2获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6f7/7721548/21c2c0464561/41748_2020_194_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验