Hamann A, Dunjko V, Wölk S
Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21a, 6020 Innsbruck, Austria.
LIACS, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands.
Quantum Mach Intell. 2021;3(2):22. doi: 10.1007/s42484-021-00049-7. Epub 2021 Aug 2.
In recent years, quantum-enhanced machine learning has emerged as a particularly fruitful application of quantum algorithms, covering aspects of supervised, unsupervised and reinforcement learning. Reinforcement learning offers numerous options of how quantum theory can be applied, and is arguably the least explored, from a quantum perspective. Here, an agent explores an environment and tries to find a behavior optimizing some figure of merit. Some of the first approaches investigated settings where this exploration can be sped-up, by considering quantum analogs of classical environments, which can then be queried in superposition. If the environments have a strict periodic structure in time (i.e. are strictly episodic), such environments can be effectively converted to conventional oracles encountered in quantum information. However, in general environments, we obtain scenarios that generalize standard oracle tasks. In this work, we consider one such generalization, where the environment is not strictly episodic, which is mapped to an oracle identification setting with a changing oracle. We analyze this case and show that standard amplitude-amplification techniques can, with minor modifications, still be applied to achieve quadratic speed-ups. In addition, we prove that an algorithm based on Grover iterations is optimal for oracle identification even if the oracle changes over time in a way that the "rewarded space" is monotonically increasing. This result constitutes one of the first generalizations of quantum-accessible reinforcement learning.
近年来,量子增强机器学习已成为量子算法特别富有成果的应用领域,涵盖了监督学习、无监督学习和强化学习等方面。从量子角度来看,强化学习提供了多种应用量子理论的选择,并且可以说是探索最少的领域。在这里,智能体探索一个环境,并试图找到一种优化某些品质因数的行为。一些早期的方法研究了通过考虑经典环境的量子类似物来加速这种探索的设置,然后可以在叠加态中查询这些类似物。如果环境在时间上具有严格的周期性结构(即严格是 episodic 的),这样的环境可以有效地转换为量子信息中遇到的传统预言机。然而,在一般环境中,我们会得到一些推广了标准预言机任务的场景。在这项工作中,我们考虑一种这样的推广,即环境不是严格 episodic 的,它被映射到一个预言机识别设置,其中预言机是变化的。我们分析了这种情况,并表明标准的幅度放大技术只需稍作修改,仍然可以应用以实现二次加速。此外,我们证明即使预言机随时间以“奖励空间”单调增加的方式变化,基于格罗弗迭代的算法对于预言机识别也是最优的。这一结果构成了量子可及强化学习的首批一般化成果之一。