Suppr超能文献

罗马尼亚蛔虫病、蛲虫病和囊型包虫病的回顾性分析和自动化机器学习时间序列预测。

Retrospective analysis and time series forecasting with automated machine learning of ascariasis, enterobiasis and cystic echinococcosis in Romania.

机构信息

Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim, Germany.

Barcelona Institute for Global Health, University of Barcelona, Barcelona, Spain.

出版信息

PLoS Negl Trop Dis. 2021 Nov 1;15(11):e0009831. doi: 10.1371/journal.pntd.0009831. eCollection 2021 Nov.

Abstract

The epidemiology of neglected tropical diseases (NTD) is persistently underprioritized, despite NTD being widespread among the poorest populations and in the least developed countries on earth. This situation necessitates thorough and efficient public health intervention. Romania is at the brink of becoming a developed country. However, this South-Eastern European country appears to be a region that is susceptible to an underestimated burden of parasitic diseases despite recent public health reforms. Moreover, there is an evident lack of new epidemiologic data on NTD after Romania's accession to the European Union (EU) in 2007. Using the national ICD-10 dataset for hospitalized patients in Romania, we generated time series datasets for 2008-2018. The objective was to gain deep understanding of the epidemiological distribution of three selected and highly endemic parasitic diseases, namely, ascariasis, enterobiasis and cystic echinococcosis (CE), during this period and forecast their courses for the ensuing two years. Through descriptive and inferential analysis, we observed a decline in case numbers for all three NTD. Several distributional particularities at regional level emerged. Furthermore, we performed predictions using a novel automated time series (AutoTS) machine learning tool and could interestingly show a stable course for these parasitic NTD. Such predictions can help public health officials and medical organizations to implement targeted disease prevention and control. To our knowledge, this is the first study involving a retrospective analysis of ascariasis, enterobiasis and CE on a nationwide scale in Romania. It is also the first to use AutoTS technology for parasitic NTD.

摘要

被忽视的热带病(NTD)的流行病学一直被忽视,尽管 NTD 在地球上最贫穷的人群和最不发达国家中广泛存在。这种情况需要彻底和有效的公共卫生干预。罗马尼亚即将成为一个发达国家。然而,这个东南欧国家似乎是一个寄生虫病负担被低估的地区,尽管最近进行了公共卫生改革。此外,自 2007 年罗马尼亚加入欧盟(EU)以来,关于 NTD 的新流行病学数据明显缺乏。我们使用罗马尼亚住院患者的国家 ICD-10 数据集,生成了 2008-2018 年的时间序列数据集。目的是深入了解这一时期三种选定的高度流行寄生虫病(即蛔虫病、蛲虫病和囊型包虫病)的流行病学分布,并预测未来两年的发病趋势。通过描述性和推理分析,我们观察到所有三种 NTD 的病例数量都有所下降。在区域层面上出现了一些分布上的特殊性。此外,我们使用一种新颖的自动时间序列(AutoTS)机器学习工具进行预测,有趣的是,这些寄生虫 NTD 的发病趋势保持稳定。这些预测可以帮助公共卫生官员和医疗机构实施有针对性的疾病预防和控制。据我们所知,这是罗马尼亚首次对全国范围内的蛔虫病、蛲虫病和包虫病进行回顾性分析,也是首次使用 AutoTS 技术对寄生虫 NTD 进行预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eae/8584970/8ebc222a7e06/pntd.0009831.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验