Department of Materials, ETH Zürich, 8093, Zürich, Switzerland.
Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, 904-0495, Okinawa, Japan.
Nat Commun. 2021 Nov 1;12(1):6293. doi: 10.1038/s41467-021-26532-0.
Living cells harvest energy from their environments to drive the chemical processes that enable life. We introduce a minimal system that operates at similar protein concentrations, metabolic densities, and length scales as living cells. This approach takes advantage of the tendency of phase-separated protein droplets to strongly partition enzymes, while presenting minimal barriers to transport of small molecules across their interface. By dispersing these microreactors in a reservoir of substrate-loaded buffer, we achieve steady states at metabolic densities that match those of the hungriest microorganisms. We further demonstrate the formation of steady pH gradients, capable of driving microscopic flows. Our approach enables the investigation of the function of diverse enzymes in environments that mimic cytoplasm, and provides a flexible platform for studying the collective behavior of matter driven far from equilibrium.
活细胞从其环境中获取能量,以驱动使生命成为可能的化学过程。我们引入了一个最小的系统,其在蛋白质浓度、代谢密度和长度尺度上与活细胞相似。这种方法利用了相分离的蛋白质液滴强烈分隔酶的趋势,同时对小分子在其界面上的运输提供最小的障碍。通过将这些微反应器分散在充满底物的缓冲液库中,我们在代谢密度下达到了稳定状态,与最饥饿的微生物的代谢密度相匹配。我们进一步证明了能够驱动微观流动的稳定 pH 梯度的形成。我们的方法使在模拟细胞质的环境中研究各种酶的功能成为可能,并为研究远离平衡状态的物质的集体行为提供了一个灵活的平台。