Suppr超能文献

神经薛定谔方程:物理定律作为深度神经网络。

Neural Schrödinger Equation: Physical Law as Deep Neural Network.

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Jun;33(6):2686-2700. doi: 10.1109/TNNLS.2021.3120472. Epub 2022 Jun 1.

Abstract

We show a new family of neural networks based on the Schrödinger equation (SE-NET). In this analogy, the trainable weights of the neural networks correspond to the physical quantities of the Schrödinger equation. These physical quantities can be trained using the complex-valued adjoint method. Since the propagation of the SE-NET can be described by the evolution of physical systems, its outputs can be computed by using a physical solver. The trained network is transferable to actual optical systems. As a demonstration, we implemented the SE-NET with the Crank-Nicolson finite difference method on Pytorch. From the results of numerical simulations, we found that the performance of the SE-NET becomes better when the SE-NET becomes wider and deeper. However, the training of the SE-NET was unstable due to gradient explosions when SE-NET becomes deeper. Therefore, we also introduced phase-only training, which only updates the phase of the potential field (refractive index) in the Schrödinger equation. This enables stable training even for the deep SE-NET model because the unitarity of the system is kept under the training. In addition, the SE-NET enables a joint optimization of physical structures and digital neural networks. As a demonstration, we performed a numerical demonstration of end-to-end machine learning (ML) with an optical frontend toward a compact spectrometer. Our results extend the application field of ML to hybrid physical-digital optimizations.

摘要

我们展示了一类基于薛定谔方程(Schrödinger equation,SE)的神经网络(SE-NET)。在这种类比中,神经网络的可训练权重对应于薛定谔方程的物理量。这些物理量可以使用复共轭方法进行训练。由于 SE-NET 的传播可以用物理系统的演化来描述,因此可以使用物理求解器来计算其输出。经过训练的网络可以转移到实际的光学系统中。作为一个演示,我们在 Pytorch 上使用 Crank-Nicolson 有限差分法实现了 SE-NET。从数值模拟的结果中,我们发现当 SE-NET 变得更宽和更深时,其性能会更好。然而,由于 SE-NET 变得更深时梯度爆炸,导致 SE-NET 的训练不稳定。因此,我们还引入了纯相位训练,它只更新薛定谔方程中势场(折射率)的相位。这使得即使对于深度 SE-NET 模型也能实现稳定的训练,因为系统的幺正性在训练过程中得以保持。此外,SE-NET 能够实现物理结构和数字神经网络的联合优化。作为一个演示,我们针对紧凑型光谱仪进行了光学前端的端到端机器学习(ML)数值演示。我们的结果将 ML 的应用领域扩展到了混合物理-数字优化中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验