Suppr超能文献

基于深度学习的热辐射控制微结构材料分析。

Deep learning based analysis of microstructured materials for thermal radiation control.

机构信息

Department of Mechanical and Aerospace Engineering, University of California, Irvine, USA.

NASA Glenn Research Center, Cleveland, OH, USA.

出版信息

Sci Rep. 2022 Jun 13;12(1):9785. doi: 10.1038/s41598-022-13832-8.

Abstract

Microstructured materials that can selectively control the optical properties are crucial for the development of thermal management systems in aerospace and space applications. However, due to the vast design space available for microstructures with varying material, wavelength, and temperature conditions relevant to thermal radiation, the microstructure design optimization becomes a very time-intensive process and with results for specific and limited conditions. Here, we develop a deep neural network to emulate the outputs of finite-difference time-domain simulations (FDTD). The network we show is the foundation of a machine learning based approach to microstructure design optimization for thermal radiation control. Our neural network differentiates materials using discrete inputs derived from the materials' complex refractive index, enabling the model to build relationships between the microtexture's geometry, wavelength, and material. Thus, material selection does not constrain our network and it is capable of accurately extrapolating optical properties for microstructures of materials not included in the training process. Our surrogate deep neural network can synthetically simulate over 1,000,000 distinct combinations of geometry, wavelength, temperature, and material in less than a minute, representing a speed increase of over 8 orders of magnitude compared to typical FDTD simulations. This speed enables us to perform sweeping thermal-optical optimizations rapidly to design advanced passive cooling or heating systems. The deep learning-based approach enables complex thermal and optical studies that would be impossible with conventional simulations and our network design can be used to effectively replace optical simulations for other microstructures.

摘要

能够选择性地控制光学性质的微结构材料对于航空航天和空间应用中的热管理系统的发展至关重要。然而,由于与热辐射相关的材料、波长和温度条件的微结构具有广泛的设计空间,微结构设计优化成为一个非常耗时的过程,并且结果仅限于特定和有限的条件。在这里,我们开发了一个深度神经网络来模拟有限时域差分法(FDTD)模拟的输出。我们展示的网络是基于机器学习的热辐射控制微结构设计优化方法的基础。我们的神经网络使用从材料复折射率得出的离散输入来区分材料,使模型能够建立微结构几何形状、波长和材料之间的关系。因此,材料选择不会限制我们的网络,并且它能够准确地外推未包含在训练过程中的材料的微结构的光学性质。我们的替代深度神经网络可以在不到一分钟的时间内综合模拟超过 100 万个不同的几何形状、波长、温度和材料组合,与典型的 FDTD 模拟相比,速度提高了 8 个数量级以上。这种速度使我们能够快速进行热光学优化,以设计先进的被动冷却或加热系统。基于深度学习的方法可以进行复杂的热光学研究,这是传统模拟无法实现的,并且我们的网络设计可以有效地替代其他微结构的光学模拟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验