Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia.
Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia.
Life Sci. 2022 Feb 15;291:120111. doi: 10.1016/j.lfs.2021.120111. Epub 2021 Oct 31.
The Nrf2 transcription factor governs the expression of hundreds genes involved in cell defense against oxidative stress, the hallmark of numerous diseases such as neurodegenerative, cardiovascular, some viral pathologies, diabetes and others. The main route for Nrf2 activity regulation is via interactions with the Keap1 protein. Under the normoxia the Keap1 binds the Nrf2 and targets it to the proteasomal degradation, while the Keap1 is regenerated. Upon oxidative stress the interactions between Nrf2 and Keap1 are interrupted and the Nrf2 activates the transcription of the protective genes. Currently, the Nrf2 system activation is considered as a powerful cytoprotective strategy for treatment of different pathologies, which pathogenesis relies on oxidative stress including viral diseases of pivotal importance such as COVID-19. The implementation of this strategy is accomplished mainly through the inactivation of the Keap1 "guardian" function. Two approaches are now developing: the Keap1 modification via electrophilic agents, which leads to the Nrf2 release, and direct interruption of the Nrf2:Keap1 protein-protein interactions (PPI). Because of theirs chemical structure, the Nrf2 electrophilic inducers could non-specifically interact with others cellular proteins leading to undesired effects. Whereas the non-electrophilic inhibitors of the Nrf2:Keap1 PPI could be more specific, thereby widening the therapeutic window.
Nrf2 转录因子调控着数百个基因的表达,这些基因参与细胞对氧化应激的防御,氧化应激是许多疾病的特征,如神经退行性疾病、心血管疾病、某些病毒病理学、糖尿病等。Nrf2 活性调节的主要途径是通过与 Keap1 蛋白的相互作用。在常氧条件下,Keap1 与 Nrf2 结合并将其靶向蛋白酶体降解,同时 Keap1 被再生。在氧化应激下,Nrf2 和 Keap1 之间的相互作用被打断,Nrf2 激活保护性基因的转录。目前,Nrf2 系统的激活被认为是治疗不同疾病的一种强大的细胞保护策略,这些疾病的发病机制依赖于氧化应激,包括 COVID-19 等至关重要的病毒疾病。该策略的实施主要通过使 Keap1 的“监护”功能失活来实现。目前有两种方法正在发展:通过亲电试剂修饰 Keap1,导致 Nrf2 释放,以及直接中断 Nrf2:Keap1 蛋白-蛋白相互作用(PPI)。由于其化学结构,Nrf2 的亲电诱导剂可能会与其他细胞蛋白非特异性相互作用,导致不良后果。而 Nrf2:Keap1 PPI 的非亲电抑制剂可能更具特异性,从而扩大治疗窗口。