Department of Physics and Astronomy Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
LaserLaB Amsterdam, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
Proc Natl Acad Sci U S A. 2021 Nov 9;118(45). doi: 10.1073/pnas.2115089118.
Intraflagellar transport (IFT), a bidirectional intracellular transport mechanism in cilia, relies on the cooperation of kinesin-2 and IFT-dynein motors. In chemosensory cilia, motors undergo rapid turnarounds to effectively work together in driving IFT. Here, we push the envelope of fluorescence imaging to obtain insight into the underlying mechanism of motor turnarounds. We developed an alternating dual-color imaging system that allows simultaneous single-molecule imaging of kinesin-II turnarounds and ensemble imaging of IFT trains. This approach allowed direct visualization of motor detachment and reattachment during turnarounds and accordingly demonstrated that the turnarounds are actually single-motor switching between opposite-direction IFT trains rather than the behaviors of motors moving independently of IFT trains. We further improved the time resolution of single-motor imaging up to 30 ms to zoom into motor turnarounds, revealing diffusion during motor turnarounds, which unveils the mechanism of motor switching trains: detach-diffuse-attach. The subsequent single-molecule analysis of turnarounds unveiled location-dependent diffusion coefficients and diffusion times for both kinesin-2 and IFT-dynein motors. From correlating the diffusion times with IFT train frequencies, we estimated that kinesins tend to attach to the next train passing in the opposite direction. IFT-dynein, however, diffuses longer and lets one or two trains pass before attaching. This might be a direct consequence of the lower diffusion coefficient of the larger IFT-dynein. Our results provide important insights into how motors can cooperate to drive intracellular transport.
鞭毛内运输(IFT)是一种在纤毛中双向的细胞内运输机制,依赖于驱动 IFT 的动力蛋白 kinesin-2 和 IFT-dynein 的合作。在化学感觉纤毛中,马达经历快速的翻转,以有效地协同工作来驱动 IFT。在这里,我们推动荧光成像的极限,以深入了解马达翻转的潜在机制。我们开发了一种交替的双色成像系统,允许同时对 kinesin-II 翻转进行单分子成像和对 IFT 列车进行整体成像。这种方法允许在翻转过程中直接观察到马达的脱离和重新附着,从而表明翻转实际上是单马达在相反方向的 IFT 列车之间的切换,而不是独立于 IFT 列车的马达行为。我们进一步将单马达成像的时间分辨率提高到 30 毫秒,以放大马达翻转,揭示了马达翻转过程中的扩散,揭示了马达切换列车的机制:脱离-扩散-附着。随后对翻转的单分子分析揭示了 kinesin-2 和 IFT-dynein 马达的位置依赖性扩散系数和扩散时间。通过将扩散时间与 IFT 列车的频率相关联,我们估计 kinesin 倾向于附着在相反方向通过的下一个列车上。然而,IFT-dynein 扩散的时间更长,在附着之前会让一个或两个列车通过。这可能是由于较大的 IFT-dynein 的扩散系数较低的直接结果。我们的结果提供了重要的见解,说明马达如何能够合作来驱动细胞内运输。