Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5, Canada.
ForeQast Technologies Limited, Waterloo, ON, N2L 5M1, Canada.
Sci Rep. 2021 Nov 3;11(1):21624. doi: 10.1038/s41598-021-00502-4.
We demonstrate that neural networks that process noisy data can learn to exploit, when available, access to auxiliary noise that is correlated with the noise on the data. In effect, the network learns to use the correlated auxiliary noise as an approximate key to decipher its noisy input data. An example of naturally occurring correlated auxiliary noise is the noise due to decoherence. Our results could, therefore, also be of interest, for example, for machine-learned quantum error correction.
我们证明,处理噪声数据的神经网络可以学习利用可用的与数据噪声相关联的辅助噪声。实际上,该网络学会使用相关的辅助噪声作为解密其噪声输入数据的近似关键。自然存在的相关辅助噪声的一个例子是由于退相干引起的噪声。因此,我们的结果也可能对例如机器学习量子纠错等领域感兴趣。