Suppr超能文献

预测心房颤动患者的全因死亡风险:基于前瞻性数据集生成的新型LASSO-Cox模型

Predicting All-Cause Mortality Risk in Atrial Fibrillation Patients: A Novel LASSO-Cox Model Generated From a Prospective Dataset.

作者信息

Chen Yu, Wu Shiwan, Ye Jianfeng, Wu Muli, Xiao Zhongbo, Ni Xiaobin, Wang Bin, Chen Chang, Chen Yequn, Tan Xuerui, Liu Ruisheng

机构信息

Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China.

Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China.

出版信息

Front Cardiovasc Med. 2021 Oct 18;8:730453. doi: 10.3389/fcvm.2021.730453. eCollection 2021.

Abstract

Although mortality remains high in patients with atrial fibrillation (AF), there have been limited studies exploring machine learning (ML) models on mortality risk prediction in patients with AF. This study sought to develop an ML model that captures important variables in order to predict all-cause mortality in AF patients. In this single center prospective study, an ML-based mortality prediction model was developed and validated using a dataset of 2,012 patients who experienced AF from November 2018 to February 2020 at the First Affiliated Hospital of Shantou University Medical College. The dataset was randomly divided into a training set (70%, = 1,223) and a validation set (30%, = 552). A total of 122 features were collected for variable selection. Least absolute shrinkage and selection operator (LASSO) and random forest (RF) algorithms were used for variable selection. Ten ML models were developed using variables selected by LASSO or RF. The best model was selected and compared with conventional risk scores. A nomogram and user-friendly online tool were developed to facilitate the mortality predictions and management recommendations. Thirteen features were selected by the LASSO regression algorithm. The LASSO-Cox model achieved an area under the curve (AUC) of 0.842 in the training dataset, and 0.854 in the validation dataset. A nomogram based on eight independent features was developed for the prediction of survival at 30, 180, and 365 days following discharge. Both the time dependent receiver operating characteristic (ROC) and decision curve analysis (DCA) showed better performances of the nomogram compared to the CHADS-VASc and HAS-BLED models. The LASSO-Cox mortality predictive model shows potential benefits in death risk evaluation for AF patients over the 365-day period following discharge. This novel ML approach may also provide physicians with personalized management recommendations.

摘要

尽管房颤(AF)患者的死亡率仍然很高,但探索用于预测AF患者死亡风险的机器学习(ML)模型的研究有限。本研究旨在开发一种ML模型,该模型能够捕捉重要变量,以预测AF患者的全因死亡率。在这项单中心前瞻性研究中,使用2018年11月至2020年2月在汕头大学医学院第一附属医院经历房颤的2012例患者的数据集,开发并验证了基于ML的死亡率预测模型。该数据集被随机分为训练集(70%,n = 1223)和验证集(30%,n = 552)。总共收集了122个特征用于变量选择。使用最小绝对收缩和选择算子(LASSO)和随机森林(RF)算法进行变量选择。使用通过LASSO或RF选择的变量开发了10个ML模型。选择最佳模型并与传统风险评分进行比较。开发了列线图和用户友好的在线工具,以促进死亡率预测和管理建议。LASSO回归算法选择了13个特征。LASSO - Cox模型在训练数据集中的曲线下面积(AUC)为0.842,在验证数据集中为0.854。开发了基于八个独立特征的列线图,用于预测出院后30、180和365天的生存率。与CHADS - VASc和HAS - BLED模型相比,时间依赖性受试者操作特征(ROC)和决策曲线分析(DCA)均显示列线图具有更好的性能。LASSO - Cox死亡率预测模型在出院后365天内评估AF患者的死亡风险方面显示出潜在益处。这种新颖的ML方法还可能为医生提供个性化的管理建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38b2/8558306/483e37e663ec/fcvm-08-730453-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验