IEEE Trans Med Imaging. 2022 Apr;41(4):857-868. doi: 10.1109/TMI.2021.3125061. Epub 2022 Apr 1.
Coronary calcification is a strong indicator of coronary artery disease and a key determinant of the outcome of percutaneous coronary intervention. We propose a fully automated method to segment and quantify coronary calcification in intravascular OCT (IVOCT) images based on convolutional neural networks (CNN). All possible calcified plaques were segmented from IVOCT pullbacks using a spatial-temporal encoder-decoder network by exploiting the 3D continuity information of the plaques, which were then screened and classified by a DenseNet network to reduce false positives. A novel data augmentation method based on the IVOCT image acquisition pattern was also proposed to improve the performance and robustness of the segmentation. Clinically relevant metrics including calcification area, depth, angle, thickness, volume, and stent-deployment calcification score, were automatically computed. 13844 IVOCT images with 2627 calcification slices from 45 clinical OCT pullbacks were collected and used to train and test the model. The proposed method performed significantly better than existing state-of-the-art 2D and 3D CNN methods. The data augmentation method improved the Dice similarity coefficient for calcification segmentation from 0.615±0.332 to 0.756±0.222, reaching human-level inter-observer agreement. Our proposed region-based classifier improved image-level calcification classification precision and F1-score from 0.725±0.071 and 0.791±0.041 to 0.964±0.002 and 0.883±0.008, respectively. Bland-Altman analysis showed close agreement between manual and automatic calcification measurements. Our proposed method is valuable for automated assessment of coronary calcification lesions and in-procedure planning of stent deployment.
冠状动脉钙化是冠状动脉疾病的一个强有力的指标,也是经皮冠状动脉介入治疗结果的关键决定因素。我们提出了一种基于卷积神经网络(CNN)的全自动方法,用于分割和量化血管内光学相干断层扫描(IVOCT)图像中的冠状动脉钙化。通过利用斑块的 3D 连续性信息,使用时空编码器-解码器网络从 IVOCT 拉回中分割所有可能的钙化斑块,然后使用 DenseNet 网络进行筛选和分类,以减少假阳性。还提出了一种基于 IVOCT 图像采集模式的新的数据增强方法,以提高分割的性能和鲁棒性。自动计算了临床相关的指标,包括钙化面积、深度、角度、厚度、体积和支架部署钙化评分。从 45 个 OCT 拉回中收集了 13844 个 IVOCT 图像和 2627 个钙化切片,用于训练和测试模型。所提出的方法明显优于现有的 2D 和 3D CNN 方法。数据增强方法提高了钙化分割的 Dice 相似系数,从 0.615±0.332 提高到 0.756±0.222,达到了人类观察者间的一致性。所提出的基于区域的分类器提高了图像级钙化分类的精度和 F1 分数,从 0.725±0.071 和 0.791±0.041 提高到 0.964±0.002 和 0.883±0.008。Bland-Altman 分析表明,手动和自动钙化测量之间具有很好的一致性。所提出的方法对于自动评估冠状动脉钙化病变和支架部署过程中的规划具有重要价值。