Department of Information Technology, Hindustan College of Science and Technology, Mathura, Uttar Pradesh, India.
Department of Electronics and Computer Science, R. T. M. Nagpur University, Nagpur, Maharashtra, India.
Comput Biol Med. 2021 Dec;139:104968. doi: 10.1016/j.compbiomed.2021.104968. Epub 2021 Oct 22.
The design and development of a computer-based system for breast cancer detection are largely reliant on feature selection techniques. These techniques are used to reduce the dimensionality of the feature space by removing irrelevant or redundant features from the original set. This article presents a hybrid feature selection method that is based on the Butterfly optimization algorithm (BOA) and the Ant Lion optimizer (ALO) to form a hybrid BOAALO method. The optimal subset of features chosen by BOAALO is utilized to predict the benign or malignant status of breast tissue using three classifiers: artificial neural network, adaptive neuro-fuzzy inference system, and support vector machine. The goodness of the proposed method is tested using 651 mammogram images. The results show that BOAALO outperforms the original BOA and ALO in terms of accuracy, sensitivity, specificity, kappa value, type-I, and type-II error as well as the receiver operating characteristics curve. Additionally, the suggested method's robustness is assessed and compared to five well-known methods using a benchmark dataset. The experimental findings demonstrate that BOAALO achieves a high degree of accuracy with a minimum number of features. These results support the suggested method's applicability for breast cancer diagnosis.
基于计算机的乳腺癌检测系统的设计和开发在很大程度上依赖于特征选择技术。这些技术用于通过从原始特征集中去除不相关或冗余的特征来降低特征空间的维度。本文提出了一种基于蝴蝶优化算法(BOA)和蚁狮优化算法(ALO)的混合特征选择方法,形成了混合 BOAALO 方法。BOAALO 选择的最优特征子集用于使用三个分类器:人工神经网络、自适应神经模糊推理系统和支持向量机来预测乳腺组织的良性或恶性状态。使用 651 张乳房 X 光图像来测试所提出方法的有效性。结果表明,BOAALO 在准确性、灵敏度、特异性、kappa 值、I 型和 II 型错误以及接收者操作特征曲线方面均优于原始 BOA 和 ALO。此外,还使用基准数据集评估并比较了所建议方法的稳健性与五种知名方法。实验结果表明,BOAALO 用最少的特征实现了高精度。这些结果支持了所提出的方法在乳腺癌诊断中的适用性。