Suppr超能文献

基于变分自编码器的乳腺癌病理图像分析增强用于癌症检测。

Enhancing the Breast Histopathology Image Analysis for Cancer Detection Using Variational Autoencoder.

机构信息

Symbiosis Institute of Technology, Symbiosis International University, Pune 412115, India.

Faculty of Computing and Data Sciences, FLAME University, Lavale, Pune 412115, India.

出版信息

Int J Environ Res Public Health. 2023 Feb 27;20(5):4244. doi: 10.3390/ijerph20054244.

Abstract

A breast tissue biopsy is performed to identify the nature of a tumour, as it can be either cancerous or benign. The first implementations involved the use of machine learning algorithms. Random Forest and Support Vector Machine (SVM) were used to classify the input histopathological images into whether they were cancerous or non-cancerous. The implementations continued to provide promising results, and then Artificial Neural Networks (ANNs) were applied for this purpose. We propose an approach for reconstructing the images using a Variational Autoencoder (VAE) and the Denoising Variational Autoencoder (DVAE) and then use a Convolutional Neural Network (CNN) model. Afterwards, we predicted whether the input image was cancerous or non-cancerous. Our implementation provides predictions with 73% accuracy, which is greater than the results produced by our custom-built CNN on our dataset. The proposed architecture will prove to be a new field of research and a new area to be explored in the field of computer vision using CNN and Generative Modelling since it incorporates reconstructions of the original input images and provides predictions on them thereafter.

摘要

乳腺组织活检用于确定肿瘤的性质,因为它可能是癌性的或良性的。最初的实现涉及使用机器学习算法。随机森林和支持向量机(SVM)被用于将输入的组织病理学图像分类为癌性或非癌性。这些实现继续提供有希望的结果,然后应用人工神经网络(ANNs)来实现这一目标。我们提出了一种使用变分自动编码器(VAE)和去噪变分自动编码器(DVAE)重建图像的方法,然后使用卷积神经网络(CNN)模型。之后,我们预测输入图像是否为癌性或非癌性。我们的实现提供了 73%的准确率预测,这比我们在数据集上自定义的 CNN 模型产生的结果要好。由于该架构包含对原始输入图像的重建,并在此基础上进行预测,因此它将成为计算机视觉领域中使用 CNN 和生成式建模的一个新的研究领域和探索领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d740/10002012/371c7d1236f6/ijerph-20-04244-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验