Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.
Nat Commun. 2021 Nov 4;12(1):6395. doi: 10.1038/s41467-021-26682-1.
Single-cell RNA sequencing (scRNA-seq) provides unprecedented technical and statistical potential to study gene regulation but is subject to technical variations and sparsity. Furthermore, statistical association testing remains difficult for scRNA-seq. Here we present Normalisr, a normalization and statistical association testing framework that unifies single-cell differential expression, co-expression, and CRISPR screen analyses with linear models. By systematically detecting and removing nonlinear confounders arising from library size at mean and variance levels, Normalisr achieves high sensitivity, specificity, speed, and generalizability across multiple scRNA-seq protocols and experimental conditions with unbiased p-value estimation. The superior scalability allows us to reconstruct robust gene regulatory networks from trans-effects of guide RNAs in large-scale single cell CRISPRi screens. On conventional scRNA-seq, Normalisr recovers gene-level co-expression networks that recapitulated known gene functions.
单细胞 RNA 测序 (scRNA-seq) 为研究基因调控提供了前所未有的技术和统计潜力,但它受到技术差异和稀疏性的影响。此外,单细胞 RNA-seq 的统计关联测试仍然很困难。在这里,我们提出了 Normalisr,这是一个归一化和统计关联测试框架,它将单细胞差异表达、共表达和 CRISPR 筛选分析与线性模型统一起来。通过系统地检测和去除来自平均和方差水平的库大小的非线性混杂因素,Normalisr 在具有无偏 p 值估计的多个 scRNA-seq 协议和实验条件下实现了高灵敏度、特异性、速度和通用性。卓越的可扩展性允许我们从大规模单细胞 CRISPRi 筛选中向导 RNA 的转录效应中重建稳健的基因调控网络。在常规的 scRNA-seq 中,Normalisr 恢复了基因水平的共表达网络,这些网络再现了已知的基因功能。