Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, UK.
Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK.
Adv Mater. 2022 Jan;34(3):e2104608. doi: 10.1002/adma.202104608. Epub 2021 Nov 18.
Solid-state transistor sensors that can detect biomolecules in real time are highly attractive for emerging bioanalytical applications. However, combining upscalable manufacturing with the required performance remains challenging. Here, an alternative biosensor transistor concept is developed, which relies on a solution-processed In O /ZnO semiconducting heterojunction featuring a geometrically engineered tri-channel architecture for the rapid, real-time detection of important biomolecules. The sensor combines a high electron mobility channel, attributed to the electronic properties of the In O /ZnO heterointerface, in close proximity to a sensing surface featuring tethered analyte receptors. The unusual tri-channel design enables strong coupling between the buried electron channel and electrostatic perturbations occurring during receptor-analyte interactions allowing for robust, real-time detection of biomolecules down to attomolar (am) concentrations. The experimental findings are corroborated by extensive device simulations, highlighting the unique advantages of the heterojunction tri-channel design. By functionalizing the surface of the geometrically engineered channel with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody receptors, real-time detection of the SARS-CoV-2 spike S1 protein down to am concentrations is demonstrated in under 2 min in physiological relevant conditions.
在新兴的生物分析应用中,能够实时检测生物分子的固态晶体管传感器极具吸引力。然而,将可扩展的制造与所需的性能相结合仍然具有挑战性。在这里,开发了一种替代的生物传感器晶体管概念,该概念依赖于一种溶液处理的 In O/ZnO 半导体异质结,具有几何工程的三通道架构,用于快速、实时检测重要的生物分子。该传感器结合了高电子迁移率通道,归因于 In O/ZnO 异质界面的电子特性,该通道与具有连接分析物受体的传感表面非常接近。不寻常的三通道设计允许在受体-分析物相互作用过程中发生的静电扰动与埋置电子通道之间进行强耦合,从而能够对生物分子进行稳健、实时的检测,检测浓度低至飞摩尔(am)。实验结果得到了广泛的器件模拟的证实,突出了异质结三通道设计的独特优势。通过用严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)抗体受体对几何工程通道的表面进行功能化,在生理相关条件下,在不到 2 分钟的时间内即可实时检测到 SARS-CoV-2 刺突 S1 蛋白,检测浓度低至 am。