Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, 00144, Rome, Italy.
Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, 00161, Rome, Italy.
J Exp Clin Cancer Res. 2021 Nov 5;40(1):347. doi: 10.1186/s13046-021-02144-w.
Glioblastoma (GBM; grade IV glioma) is characterized by a very short overall survival time and extremely low 5-year survival rates. We intend to promote experimental and clinical research on rationale and scientifically driven drug repurposing. This may represent a safe and often inexpensive way to propose novel pharmacological approaches to GBM. Our precedent work describes the role of chlorpromazine (CPZ) in hindering malignant features of GBM. Here, we investigate in greater detail the molecular mechanisms at the basis of the effect of CPZ on GBM cells.
We employed proteomics platforms, i.e., activity-based protein profiling plus mass spectrometry, to identify potential cellular targets of the drug. Then, by means of established molecular and cellular biology techniques, we assessed the effects of this drug on GBM cell metabolic and survival pathways.
The experimental output indicated as putative targets of CPZ several of factors implicated in endoplasmic reticulum (ER) stress, with consequent unfolded protein response (UPR). Such a perturbation culminated in a noticeable reactive oxygen species generation and intense autophagic response that resulted in cytotoxic and abortive effects for six GBM cell lines, three of which growing as neurospheres, while it appeared cytoprotective for the RPE-1 human non-cancer neuro-ectodermal cell line.
This discrepancy could be central in explaining the lethal effects of the drug on GBM cells and the relatively scarce cytotoxicity toward normal tissues attributed to this compound. The data presented here offer support to the multicenter phase II clinical trial we have undertaken, which consists of the addition of CPZ to first-line treatment of GBM patients carrying a hypo- or un-methylated MGMT gene, i.e. those characterized by intrinsic resistance to temozolomide.
胶质母细胞瘤(GBM;IV 级神经胶质瘤)的总生存时间非常短,5 年生存率极低。我们旨在促进合理的实验和临床研究,以及基于科学的药物再利用。这可能是一种安全且通常廉价的方法,提出治疗 GBM 的新的药理学方法。我们之前的工作描述了氯丙嗪(CPZ)在抑制 GBM 恶性特征中的作用。在这里,我们更详细地研究了 CPZ 对 GBM 细胞作用的分子机制。
我们采用蛋白质组学平台,即活性蛋白质谱分析加质谱,来鉴定药物的潜在细胞靶标。然后,通过建立的分子和细胞生物学技术,我们评估了该药物对 GBM 细胞代谢和存活途径的影响。
实验结果表明,CPZ 的几个潜在靶点与内质网(ER)应激相关的因子有关,随后出现未折叠蛋白反应(UPR)。这种干扰最终导致大量活性氧的产生和强烈的自噬反应,从而对六种 GBM 细胞系产生细胞毒性和无效作用,其中三种细胞系作为神经球生长,而对 RPE-1 人非癌神经外胚层细胞系则表现出细胞保护作用。
这种差异可能是解释药物对 GBM 细胞的致命作用以及该化合物对正常组织相对较少的细胞毒性的关键。这里呈现的数据为我们正在进行的多中心 II 期临床试验提供了支持,该试验将 CPZ 加入到携带低甲基化或非甲基化 MGMT 基因的 GBM 患者的一线治疗中,即对替莫唑胺具有内在耐药性的患者。