Suppr超能文献

设计一个在埃塞俄比亚 Chiro 医院抗逆转录病毒治疗中心的抗逆转录病毒方案预测模型。

Designing a Predictive Model for Antiretroviral Regimen at the Antiretroviral Therapy Center in Chiro Hospital, Ethiopia.

机构信息

Computer Science Department, Oda Bultum University, Chiro, Ethiopia.

Faculty of Computing & Software Engineering, Arba Minch University, Arba Minch, Ethiopia.

出版信息

J Healthc Eng. 2021 Oct 29;2021:1161923. doi: 10.1155/2021/1161923. eCollection 2021.

Abstract

Nowadays, the huge amount of patient's data significantly increases with respect to the time in repositories and data mining is increasingly used as an emerging research area in medical fields for extracting useful and previously unknown insights/patterns from the repository data. These unknown patterns/hidden insights can help in discovering new knowledge hidden in these data repositories. From the observation, different ARV regimens were ordered for different patients. However, combination of these drugs causes different side effects on the patients. It has been observed that there was a lack of predictive studies and designed models available in hospitals specifically ART Centers that accurately determine or classify the patient's ARV regimen to TDF + 3TC + EFV, TDF + 3TC + NVP, AZT + 3TC + ATV/R, AZT + 3TC + LPV/R, TDF + 3TC + LVP/R, TDF + 3TC + ATV/R, 8888, and ABC + 3TC + LPV/R. In order to solve these kinds of problems, we built an accurate classifier system or model using parameters like Patient Age, Patient Encounter Day, Patient Encounter Month, Patient Encounter Year, Patient Weight, Patient CD4 Count Adult, Patient TB Screen, Patient Following WHO Stage, Patient CD4 Percent Child, Patient Regimen Specify, Patient Regimen, and so on. The general objective of this research was predictive modeling for the patient's ARV regimen class through data mining techniques so as to improve them. The study used the CRIPS-DM methodology to find and interpret patterns in repositories. A decision tree (J48 and Random Forest) algorithm was used for classification. Using all tested classifiers, the investigation of the study shows that the total accuracy was more than 60%. On the other hand, among different classifications, class H (ABC + 3TC + LPV/R) has shown the worst prediction. But it was revealed that the J48 classifier relatively produces higher classification accuracy for the D (AZT-3TC-NVP) regimen. Here, classification depended on the selected parameters, which revealed that prediction accuracy value differed among all classifiers and the selected attributes. Finally, the study concluded that data mining can be used as a significant technique to discover patient regimen based on salient affecting factors with 96.1% precision achieved. Ensemble learning resolves the categorizing models of greater anticipating performance with different learning algorithms. This model aligned with sentimental investigation to magnify the appearances of the dataset either from the social media or from primary data collection. The empirical investigation with different parameters shows the detailed improvement of their learning methods.

摘要

如今,患者数据量大幅增加,存储库中的数据挖掘越来越多地被用作医学领域的一个新兴研究领域,以便从存储库数据中提取有用的和以前未知的见解/模式。这些未知的模式/隐藏的见解可以帮助发现隐藏在这些数据存储库中的新知识。从观察结果来看,不同的 ARV 方案被用于不同的患者。然而,这些药物的组合会对患者产生不同的副作用。已经观察到,医院特别是 ART 中心缺乏准确确定或分类患者 ARV 方案为 TDF+3TC+EFV、TDF+3TC+NVP、AZT+3TC+ATV/R、AZT+3TC+LPV/R、TDF+3TC+LVP/R、TDF+3TC+ATV/R、8888 和 ABC+3TC+LPV/R 的预测研究和设计模型。为了解决这些问题,我们使用患者年龄、患者就诊日、患者就诊月、患者就诊年、患者体重、患者 CD4 计数成人、患者结核病筛查、患者遵循世卫组织分期、患者 CD4 百分比儿童、患者方案指定、患者方案等参数构建了一个准确的分类器系统或模型。这项研究的总体目标是通过数据挖掘技术对患者的 ARV 方案进行预测建模,以改进这些方案。该研究使用 CRIPS-DM 方法在存储库中查找和解释模式。决策树(J48 和随机森林)算法用于分类。使用所有经过测试的分类器,研究表明总准确率超过 60%。另一方面,在不同的分类中,类 H(ABC+3TC+LPV/R)的预测效果最差。但结果表明,J48 分类器相对来说对 D(AZT-3TC-NVP)方案产生了更高的分类准确率。在这里,分类取决于所选参数,这表明预测准确率值在所有分类器和所选属性之间存在差异。最后,研究得出结论,数据挖掘可以作为一种重要技术,根据显著影响因素发现患者的治疗方案,准确率达到 96.1%。集成学习可以解决具有不同学习算法的分类模型的问题,从而提高预测性能。该模型与情感调查相结合,从社交媒体或从原始数据收集放大数据集的出现。通过不同参数的实证研究表明,他们的学习方法得到了详细的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba2/8570855/b796f7955ee8/JHE2021-1161923.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验