Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
J Proteome Res. 2021 Dec 3;20(12):5392-5401. doi: 10.1021/acs.jproteome.1c00640. Epub 2021 Nov 8.
Efficient peptide and protein identifications from data-independent acquisition mass spectrometric (DIA-MS) data typically rely on a project-specific spectral library with a suitable size. Here, we describe subLib, a computational strategy for optimizing the spectral library for a specific DIA data set based on a comprehensive spectral library, requiring the preliminary analysis of the DIA data set. Compared with the pan-human library strategy, subLib achieved a 41.2% increase in peptide precursor identifications and a 35.6% increase in protein group identifications in a test data set of six colorectal tumor samples. We also applied this strategy to 389 carcinoma samples from 15 tumor data sets: up to a 39.2% increase in peptide precursor identifications and a 19.0% increase in protein group identifications were observed. Our strategy for spectral library size optimization thus successfully proved to deepen the proteome coverages of DIA-MS data.
高效的肽和蛋白质鉴定通常依赖于具有合适大小的特定项目的光谱库,来自数据非依赖性采集质谱(DIA-MS)数据。在这里,我们描述了 subLib,这是一种基于全面光谱库,根据特定 DIA 数据集进行优化光谱库的计算策略,需要对 DIA 数据集进行初步分析。与泛人类库策略相比,subLib 在六个结直肠癌样本的测试数据集上分别增加了 41.2%的肽前体鉴定和 35.6%的蛋白质组鉴定。我们还将该策略应用于来自 15 个肿瘤数据集的 389 个癌样本:观察到肽前体鉴定增加了 39.2%,蛋白质组鉴定增加了 19.0%。因此,我们的光谱库大小优化策略成功证明了可以加深 DIA-MS 数据的蛋白质组覆盖度。