Suppr超能文献

深度学习生存网络在心血管风险预测中的应用:动脉粥样硬化多民族研究(MESA)。

Deep neural survival networks for cardiovascular risk prediction: The Multi-Ethnic Study of Atherosclerosis (MESA).

机构信息

Heart and Vascular Institute, West Virginia University, Morgantown, WV, USA.

Heart and Vascular Institute, West Virginia University, Morgantown, WV, USA; Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.

出版信息

Comput Biol Med. 2021 Dec;139:104983. doi: 10.1016/j.compbiomed.2021.104983. Epub 2021 Oct 29.

Abstract

BACKGROUND

There is growing interest in utilizing machine learning techniques for routine atherosclerotic cardiovascular disease (ASCVD) risk prediction. We investigated whether novel deep learning survival models can augment ASCVD risk prediction over existing statistical and machine learning approaches.

METHODS

6814 participants from the Multi-Ethnic Study of Atherosclerosis (MESA) were followed over 16 years to assess incidence of all-cause mortality (mortality) or a composite of major adverse events (MAE). Features were evaluated within the categories of traditional risk factors, inflammatory biomarkers, and imaging markers. Data was split into an internal training/testing (four centers) and external validation (two centers). Both machine learning (COXPH, RSF, and lSVM) and deep learning (nMTLR and DeepSurv) models were evaluated.

RESULTS

In comparison to the COXPH model, DeepSurv significantly improved ASCVD risk prediction for MAE (AUC: 0.82 vs. 0.80, P ≤ 0.001) and mortality (AUC: 0.87 vs. 0.84, P ≤ 0.001) with traditional risk factors alone. Implementing non-categorical NRI, we noted a >40% increase in correct reclassification compared to the COXPH model for both MAE and mortality (P ≤ 0.05). Assessing the relative risk of participants, DeepSurv was the only learning algorithm to develop a significantly improved risk score criteria, which outcompeted COXPH for both MAE (4.22 vs. 3.61, P = 0.043) and mortality (6.81 vs. 5.52, P = 0.044). The addition of inflammatory or imaging biomarkers to traditional risk factors showed minimal/no significant improvement in model prediction.

CONCLUSION

DeepSurv can leverage simple office-based clinical features alone to accurately predict ASCVD risk and cardiovascular outcomes, without the need for additional features, such as inflammatory and imaging biomarkers.

摘要

背景

利用机器学习技术进行常规动脉粥样硬化性心血管疾病(ASCVD)风险预测的兴趣日益浓厚。我们研究了新的深度学习生存模型是否可以增强现有统计和机器学习方法的 ASCVD 风险预测。

方法

来自动脉粥样硬化多民族研究(MESA)的 6814 名参与者在 16 年内接受随访,以评估全因死亡率(死亡率)或主要不良事件(MAE)的复合发生率。在传统危险因素、炎症生物标志物和影像学标志物的类别中评估特征。数据分为内部训练/测试(四个中心)和外部验证(两个中心)。评估了机器学习(COXPH、RSF 和 lSVM)和深度学习(nMTLR 和 DeepSurv)模型。

结果

与 COXPH 模型相比,DeepSurv 显著提高了仅使用传统危险因素的 MAE(AUC:0.82 对 0.80,P≤0.001)和死亡率(AUC:0.87 对 0.84,P≤0.001)的 ASCVD 风险预测。实施非分类 NRI 后,我们注意到与 COXPH 模型相比,MAE 和死亡率的正确再分类增加了>40%(P≤0.05)。评估参与者的相对风险,DeepSurv 是唯一开发出显著改进风险评分标准的学习算法,该算法优于 COXPH 模型,用于 MAE(4.22 对 3.61,P=0.043)和死亡率(6.81 对 5.52,P=0.044)。将炎症或影像学生物标志物添加到传统危险因素中,对模型预测的改善最小/无显著影响。

结论

DeepSurv 可以利用简单的基于办公室的临床特征来准确预测 ASCVD 风险和心血管结局,而无需额外的特征,如炎症和影像学生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验