Suppr超能文献

基于生存分析的新疆农村人群动脉粥样硬化性心血管疾病预测模型研究。

Study on the prediction model of atherosclerotic cardiovascular disease in the rural Xinjiang population based on survival analysis.

机构信息

Department of Public Health, Shihezi University School of Medicine, Suite 721, The Key Laboratory of Preventive Medicine, Building No. 1, Beier Road, ShiheziShihezi, 832000, Xinjiang, China.

Department of Public Health, The Key Laboratory of Preventive Medicine, Shihezi University School of Medicine, Suite 816Building No. 1, Beier Road, Shihezi, 832000, Xinjiang, China.

出版信息

BMC Public Health. 2023 Jun 1;23(1):1041. doi: 10.1186/s12889-023-15630-x.

Abstract

PURPOSE

With the increase in aging and cardiovascular risk factors, the morbidity and mortality of atherosclerotic cardiovascular disease (ASCVD), represented by ischemic heart disease and stroke, continue to rise in China. For better prevention and intervention, relevant guidelines recommend using predictive models for early detection of ASCVD high-risk groups. Therefore, this study aims to establish a population ASCVD prediction model in rural areas of Xinjiang using survival analysis.

METHODS

Baseline cohort data were collected from September to December 2016 and followed up till June 2022. A total of 7975 residents (4054 males and 3920 females) aged 30-74 years were included in the analysis. The data set was divided according to different genders, and the training and test sets ratio was 7:3 for different genders. A Cox regression, Lasso-Cox regression, and random survival forest (RSF) model were established in the training set. The model parameters were determined by cross-validation and parameter tuning and then verified in the training set. Traditional ASCVD prediction models (Framingham and China-PAR models) were constructed in the test set. Different models' discrimination and calibration degrees were compared to find the optimal prediction model for this population according to different genders and further analyze the risk factors of ASCVD.

RESULTS

After 5.79 years of follow-up, 873 ASCVD events with a cumulative incidence of 10.19% were found (7.57% in men and 14.44% in women). By comparing the discrimination and calibration degrees of each model, the RSF showed the best prediction performance in males and females (male: Area Under Curve (AUC) 0.791 (95%CI 0.767,0.813), C statistic 0.780 (95%CI 0.730,0.829), Brier Score (BS):0.060, female: AUC 0.759 (95%CI 0.734,0.783) C statistic was 0.737 (95%CI 0.702,0.771), BS:0.110). Age, systolic blood pressure (SBP), apolipoprotein B (APOB), Visceral Adiposity Index (VAI), hip circumference (HC), and plasma arteriosclerosis index (AIP) are important predictors of ASCVD in the rural population of Xinjiang.

CONCLUSION

The performance of the ASCVD prediction model based on the RSF algorithm is better than that based on Cox regression, Lasso-Cox, and the traditional ASCVD prediction model in the rural population of Xinjiang.

摘要

目的

随着人口老龄化和心血管危险因素的增加,以缺血性心脏病和中风为代表的动脉粥样硬化性心血管疾病(ASCVD)的发病率和死亡率在中国持续上升。为了更好地进行预防和干预,相关指南建议使用预测模型来早期发现 ASCVD 高危人群。因此,本研究旨在使用生存分析方法,建立新疆农村地区人群的 ASCVD 预测模型。

方法

本研究收集了 2016 年 9 月至 12 月至 2022 年 6 月的基线队列数据,对 7975 名 30-74 岁的居民(男性 4054 名,女性 3920 名)进行了随访。根据不同性别对数据集进行了划分,不同性别的训练集和测试集的比例为 7:3。在训练集中建立了 Cox 回归、Lasso-Cox 回归和随机生存森林(RSF)模型。通过交叉验证和参数调整确定模型参数,然后在训练集中对其进行验证。在测试集中构建了传统的 ASCVD 预测模型(Framingham 和 China-PAR 模型)。比较不同模型的区分度和校准度,根据不同性别找到适合该人群的最佳预测模型,并进一步分析 ASCVD 的危险因素。

结果

随访 5.79 年后,共发现 873 例 ASCVD 事件,累积发生率为 10.19%(男性为 7.57%,女性为 14.44%)。通过比较各模型的区分度和校准度,RSF 在男性和女性中表现出最佳的预测性能(男性:曲线下面积(AUC)0.791(95%CI 0.767,0.813),C 统计量 0.780(95%CI 0.730,0.829),Brier 得分(BS):0.060;女性:AUC 0.759(95%CI 0.734,0.783),C 统计量为 0.737(95%CI 0.702,0.771),BS:0.110)。年龄、收缩压(SBP)、载脂蛋白 B(APOB)、内脏脂肪指数(VAI)、臀围(HC)和血浆动脉硬化指数(AIP)是新疆农村人群 ASCVD 的重要预测因素。

结论

基于 RSF 算法的 ASCVD 预测模型在新疆农村人群中的表现优于 Cox 回归、Lasso-Cox 和传统 ASCVD 预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b44/10234013/5b85bacc27e0/12889_2023_15630_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验