Suppr超能文献

选择性区域外延生长的ZnP中的旋转畴:形成机制与功能

Rotated domains in selective area epitaxy grown ZnP: formation mechanism and functionality.

作者信息

Spadaro Maria Chiara, Escobar Steinvall Simon, Dzade Nelson Y, Martí-Sánchez Sara, Torres-Vila Pol, Stutz Elias Z, Zamani Mahdi, Paul Rajrupa, Leran Jean-Baptiste, Fontcuberta I Morral Anna, Arbiol Jordi

机构信息

Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain.

Laboratory of Semiconductor Materials, Institute of Materials, Faculty of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

出版信息

Nanoscale. 2021 Nov 18;13(44):18441-18450. doi: 10.1039/d1nr06190a.

Abstract

Zinc phosphide (ZnP) is an ideal absorber candidate for solar cells thanks to its direct bandgap, earth-abundance, and optoelectronic characteristics, albeit it has been insufficiently investigated due to limitations in the fabrication of high-quality material. It is possible to overcome these factors by obtaining the material as nanostructures, the selective area epitaxy approach, enabling additional strain relaxation mechanisms and minimizing the interface area. We demonstrate that ZnP nanowires grow mostly defect-free when growth is oriented along the [100] and [110] of the crystal, which is obtained in nanoscale openings along the [110] and [010] on InP(100). We detect the presence of two stable rotated crystal domains that coexist in the structure. They are due to a change in the growth facet, which originates either from the island formation and merging in the initial stages of growth or lateral overgrowth. These domains have been visualized through 3D atomic models and confirmed with image simulations of the atomic scale electron micrographs. Density functional theory simulations describe the rotated domains' formation mechanism and demonstrate their lattice-matched epitaxial relation. In addition, the energies of the shallow states predicted closely agree with transition energies observed by experimental studies and offer a potential origin for these defect transitions. Our study represents an important step forward in the understanding of ZnP and thus for the realisation of solar cells to respond to the present call for sustainable photovoltaic technology.

摘要

磷化锌(ZnP)因其直接带隙、地球丰度和光电特性,是太阳能电池理想的吸收体候选材料,尽管由于高质量材料制备方面的限制,对其研究尚不充分。通过将材料制备成纳米结构、采用选择性区域外延方法、启用额外的应变弛豫机制并最小化界面面积,可以克服这些因素。我们证明,当沿晶体的[100]和[110]方向生长时,ZnP纳米线大多无缺陷生长,这是在InP(100)上沿[110]和[010]的纳米级开口中获得的。我们检测到结构中存在两个共存的稳定旋转晶畴。它们是由于生长面的变化引起的,这源于生长初期的岛状形成和合并或横向过生长。这些晶畴已通过三维原子模型可视化,并通过原子尺度电子显微镜图像模拟得到证实。密度泛函理论模拟描述了旋转晶畴的形成机制,并证明了它们的晶格匹配外延关系。此外,预测的浅态能量与实验研究观察到的跃迁能量非常吻合,并为这些缺陷跃迁提供了潜在来源。我们的研究是在理解ZnP方面向前迈出的重要一步,因此对于实现响应目前对可持续光伏技术需求的太阳能电池具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6aea/8900489/f39a8895ef42/d1nr06190a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验