Garnett Erik C, Ehrler Bruno, Polman Albert, Alarcon-Llado Esther
Center for Nanophotonics, NWO-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
ACS Photonics. 2021 Jan 20;8(1):61-70. doi: 10.1021/acsphotonics.0c01045. Epub 2020 Sep 12.
Photovoltaic systems have reached impressive efficiencies, with records in the range of 20-30% for single-junction cells based on many different materials, yet the fundamental Shockley-Queisser efficiency limit of 34% is still out of reach. Improved photonic design can help approach the efficiency limit by eliminating losses from incomplete absorption or nonradiative recombination. This Perspective reviews nanopatterning methods and metasurfaces for increased light incoupling and light trapping in light absorbers and describes nanophotonics opportunities to reduce carrier recombination and utilize spectral conversion. Beyond the state-of-the-art single junction cells, photonic design plays a crucial role in the next generation of photovoltaics, including tandem and self-adaptive solar cells, and to extend the applicability of solar cells in many different ways. We address the exciting research opportunities and challenges in photonic design principles and fabrication that will accelerate the massive upscaling and (invisible) integration of photovoltaics into every available surface.
光伏系统已实现了令人瞩目的效率,基于多种不同材料的单结电池效率记录在20%至30%之间,但34%的基本肖克利-奎塞尔效率极限仍遥不可及。改进的光子设计可通过消除不完全吸收或非辐射复合造成的损失,帮助接近效率极限。本观点综述了用于增加光吸收体中的光入射耦合和光捕获的纳米图案化方法和超表面,并描述了减少载流子复合和利用光谱转换的纳米光子学机遇。除了最先进的单结电池,光子设计在下一代光伏技术中发挥着关键作用,包括串联和自适应太阳能电池,并以多种不同方式扩展太阳能电池的适用性。我们探讨了光子设计原理和制造方面令人兴奋的研究机遇与挑战,这些将加速光伏技术的大规模扩大规模以及(隐形)融入每个可用表面。