Baviskar Prashant K, Rondiya Sachin R, Patil Girish P, Sankapal Babasaheb R, Pathan Habib M, Chavan Padmakar G, Dzade Nelson Y
Department of Physics, SN Arts, DJ Malpani Commerce & BN Sarda Science College, Sangamner 422605, India.
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT Wales, U.K.
ACS Omega. 2020 Mar 20;5(12):6715-6724. doi: 10.1021/acsomega.0c00006. eCollection 2020 Mar 31.
We report the synthesis of two-dimensional porous ZnO nanosheets, CuSCN nanocoins, and ZnO/CuSCN nano-heterostructure thin films grown on fluorine-doped tin oxide substrates via two simple and low-cost solution chemical routes, i.e., chemical bath deposition and successive ionic layer adsorption and reaction methods. Detail characterizations regarding the structural, optoelectronic, and morphological properties have been carried out, which reveal high-quality and crystalline synthesized materials. Field emission (FE) investigations performed at room temperature with a base pressure of 1 × 10 mbar demonstrate superior FE performance of the ZnO/CuSCN nano-heterostructure compared to the isolated porous ZnO nanosheets and CuSCN nanocoins. For instance, the turn-on field required to draw a current density of 10 μA/cm is found to be 2.2, 1.1, and 0.7 V/μm for the ZnO, CuSCN, and ZnO/CuSCN nano-heterostructure, respectively. The observed significant improvement in the FE characteristics (ultralow turn-on field of 0.7 V/μm for an emission current density of 10 μA/cm and the achieved high current density of 2.2 mA/cm at a relatively low applied electric field of 1.8 V/μm) for the ZnO/CuSCN nano-heterostructure is superior to the isolated porous ZnO nanosheets, CuSCN nanocoins, and other reported semiconducting nano-heterostructures. Complementary first-principles density functional theory calculations predict a lower work function for the ZnO/CuSCN nano-heterostructure (4.58 eV), compared to the isolated ZnO (5.24 eV) and CuSCN (4.91 eV), validating the superior FE characteristics of the ZnO/CuSCN nano-heterostructure. The ZnO/CuSCN nanocomposite could provide a promising class of FE cathodes, flat panel displays, microwave tubes, and electron sources.
我们报道了通过两种简单且低成本的溶液化学路线,即在氟掺杂氧化锡衬底上生长二维多孔氧化锌纳米片、硫氰酸亚铜纳米币以及氧化锌/硫氰酸亚铜纳米异质结构薄膜,这两种路线分别是化学浴沉积法和连续离子层吸附与反应法。已经对其结构、光电和形态特性进行了详细表征,结果表明合成材料具有高质量和结晶性。在室温及1×10 毫巴的基础压力下进行的场发射(FE)研究表明,与孤立的多孔氧化锌纳米片和硫氰酸亚铜纳米币相比,氧化锌/硫氰酸亚铜纳米异质结构具有卓越的场发射性能。例如,对于氧化锌、硫氰酸亚铜和氧化锌/硫氰酸亚铜纳米异质结构,要获得10 μA/cm² 的电流密度所需的开启场分别为2.2、1.1和0.7 V/μm。对于氧化锌/硫氰酸亚铜纳米异质结构,观察到其场发射特性有显著改善(对于10 μA/cm² 的发射电流密度,开启场超低,为0.7 V/μm,并且在相对较低的1.8 V/μm 外加电场下实现了2.2 mA/cm² 的高电流密度),优于孤立的多孔氧化锌纳米片、硫氰酸亚铜纳米币以及其他已报道的半导体纳米异质结构。互补的第一性原理密度泛函理论计算预测,与孤立的氧化锌(5.24 eV)和硫氰酸亚铜(4.91 eV)相比,氧化锌/硫氰酸亚铜纳米异质结构的功函数更低(4.58 eV),这验证了氧化锌/硫氰酸亚铜纳米异质结构卓越的场发射特性。氧化锌/硫氰酸亚铜纳米复合材料可为一类有前景的场发射阴极、平板显示器、微波管和电子源提供材料。