Suppr超能文献

基于机器学习的特应性皮炎深度表型分析:青少年和成年患者严重程度相关因素。

Machine Learning-Based Deep Phenotyping of Atopic Dermatitis: Severity-Associated Factors in Adolescent and Adult Patients.

机构信息

Department of Dermatology and Allergy, University Hospital Bonn, Venusberg-Campus 1, Germany.

Christine Kühne-Center for Allergy Research and Education Davos (CK-CARE), Davos, Switzerland.

出版信息

JAMA Dermatol. 2021 Dec 1;157(12):1414-1424. doi: 10.1001/jamadermatol.2021.3668.

Abstract

IMPORTANCE

Atopic dermatitis (AD) is the most common chronic inflammatory skin disease and is driven by a complex pathophysiology underlying highly heterogeneous phenotypes. Current advances in precision medicine emphasize the need for stratification.

OBJECTIVE

To perform deep phenotyping and identification of severity-associated factors in adolescent and adult patients with AD.

DESIGN, SETTING, AND PARTICIPANTS: Cross-sectional data from the baseline visit of a prospective longitudinal study investigating the phenotype among inpatients and outpatients with AD from the Department of Dermatology and Allergy of the University Hospital Bonn enrolled between November 2016 and February 2020.

MAIN OUTCOMES AND MEASURES

Patients were stratified by severity groups using the Eczema Area and Severity Index (EASI). The associations of 130 factors with AD severity were analyzed applying a machine learning-gradient boosting approach with cross-validation-based tuning as well as multinomial logistic regression.

RESULTS

A total of 367 patients (157 male [42.8%]; mean [SD] age, 39 [17] years; 94% adults) were analyzed. Among the participants, 177 (48.2%) had mild disease (EASI ≤7), 120 (32.7%) had moderate disease (EASI >7 and ≤ 21), and 70 (19.1%) had severe disease (EASI >21). Atopic stigmata (cheilitis: odds ratio [OR], 8.10; 95% CI, 3.35-10.59; white dermographism: OR, 4.42; 95% CI, 1.68-11.64; Hertoghe sign: OR, 2.75; 95% CI, 1.27-5.93; nipple eczema: OR, 4.97; 95% CI, 1.56-15.78) was associated with increased probability of severe AD, while female sex was associated with reduced probability (OR, 0.30; 95% CI, 0.13-0.66). The probability of severe AD was associated with total serum immunoglobulin E levels greater than 1708 IU/mL and eosinophil values greater than 6.8%. Patients aged 12 to 21 years or older than 52 years had an elevated probability of severe AD; patients aged 22 to 51 years had an elevated probability of mild AD. Age at AD onset older than 12 years was associated with increased probability of severe AD up to a peak at 30 years; age at onset older than 33 years was associated with moderate to severe AD; and childhood onset was associated with mild AD (peak, 7 years). Lifestyle factors associated with severe AD were physical activity less than once per week and (former) smoking. Alopecia areata was associated with moderate (OR, 5.23; 95% CI, 1.53-17.88) and severe (OR, 4.67; 95% CI, 1.01-21.56) AD. Predictive performance of machine learning-gradient boosting vs multinomial logistic regression differed only slightly (mean multiclass area under the curve value: 0.71 [95% CI, 0.69-0.72] vs 0.68 [0.66-0.70], respectively).

CONCLUSIONS AND RELEVANCE

The associations found in this cross-sectional study among patients with AD might contribute to a deeper disease understanding, closer monitoring of predisposed patients, and personalized prevention and therapy.

摘要

重要性

特应性皮炎(AD)是最常见的慢性炎症性皮肤病,其病理生理学基础复杂,表型高度异质。当前精准医学的进展强调了分层的必要性。

目的

对青少年和成年 AD 患者进行深度表型分析,并确定与严重程度相关的因素。

设计、地点和参与者:这是一项横断面研究,从 2016 年 11 月至 2020 年 2 月,在波恩大学医院皮肤科和过敏科招募了门诊和住院 AD 患者的前瞻性纵向研究的基线访视中收集了横断面数据。

主要结局和测量

使用 Eczema Area and Severity Index(EASI)对患者进行严重程度分组。应用机器学习梯度提升方法结合基于交叉验证的调优以及多项逻辑回归分析了 130 个因素与 AD 严重程度的关联。

结果

共分析了 367 例患者(男性 157 例[42.8%];平均[标准差]年龄 39[17]岁;94%为成年人)。参与者中,177 例(48.2%)为轻度疾病(EASI≤7),120 例(32.7%)为中度疾病(EASI>7 且≤21),70 例(19.1%)为重度疾病(EASI>21)。特应性标志(唇炎:比值比[OR],8.10;95%置信区间[CI],3.35-10.59;白色划痕症:OR,4.42;95%CI,1.68-11.64;Hertoghe 征:OR,2.75;95%CI,1.27-5.93;乳头湿疹:OR,4.97;95%CI,1.56-15.78)与严重 AD 的概率增加相关,而女性与概率降低相关(OR,0.30;95%CI,0.13-0.66)。总血清免疫球蛋白 E 水平大于 1708 IU/mL 和嗜酸性粒细胞值大于 6.8%与严重 AD 的概率相关。12 至 21 岁或 52 岁以上的患者发生严重 AD 的概率增加;22 至 51 岁的患者发生轻度 AD 的概率增加。AD 发病年龄大于 12 岁与严重 AD 的概率增加相关,峰值出现在 30 岁;发病年龄大于 33 岁与中重度 AD 相关;儿童发病与轻度 AD 相关(峰值为 7 岁)。与严重 AD 相关的生活方式因素是每周运动次数少于一次和(曾)吸烟。斑秃与中度(OR,5.23;95%CI,1.53-17.88)和重度(OR,4.67;95%CI,1.01-21.56)AD 相关。机器学习梯度提升与多项逻辑回归的预测性能差异仅略有不同(平均多类曲线下面积值:0.71[95%CI,0.69-0.72]与 0.68[0.66-0.70])。

结论和相关性

本研究在 AD 患者中发现的关联可能有助于更深入地了解疾病,对易患患者进行更密切的监测,并进行个性化的预防和治疗。

相似文献

1
2
Phenotypical Differences of Childhood- and Adult-Onset Atopic Dermatitis.
J Allergy Clin Immunol Pract. 2018 Jul-Aug;6(4):1306-1312. doi: 10.1016/j.jaip.2017.10.005. Epub 2017 Nov 10.
3
Association of Adult Atopic Dermatitis Severity With Decreased Physical Activity: A Cross-sectional Study.
Dermatitis. 2023 May-Jun;34(3):218-223. doi: 10.1097/DER.0000000000000921. Epub 2023 Jan 2.
4
Association of Adult Atopic Dermatitis Severity With Bacterial, Viral, and Fungal Skin Infections.
Dermatitis. 2023 Mar-Apr;34(2):120-126. doi: 10.1089/derm.2022.29006.jrd. Epub 2023 Jan 19.
5
The Influence of Atopic Dermatitis on Health-Related Quality of Life in Bangladesh.
Int J Environ Res Public Health. 2021 Nov 4;18(21):11593. doi: 10.3390/ijerph182111593.
7
The risk factors for food allergy in infants with atopic dermatitis.
Turk J Pediatr. 2023;65(2):235-244. doi: 10.24953/turkjped.2022.656.
8
Prevalence and associations of fatigue in childhood atopic dermatitis: A cross-sectional study.
J Eur Acad Dermatol Venereol. 2023 Apr;37(4):763-771. doi: 10.1111/jdv.18819. Epub 2023 Jan 4.
10
Clinical phenotyping of atopic dermatitis using combined itch and lesional severity: A prospective observational study.
Ann Allergy Asthma Immunol. 2021 Jul;127(1):83-90.e2. doi: 10.1016/j.anai.2021.03.019. Epub 2021 Apr 2.

引用本文的文献

2
Machine learning-based prediction models for atopic dermatitis diagnosis and evaluation.
Fundam Res. 2023 Mar 21;5(3):1313-1322. doi: 10.1016/j.fmre.2023.02.021. eCollection 2025 May.
4
Application and research progress of artificial intelligence in allergic diseases.
Int J Med Sci. 2025 Apr 9;22(9):2088-2102. doi: 10.7150/ijms.105422. eCollection 2025.
5
Advancements in artificial intelligence for atopic dermatitis: diagnosis, treatment, and patient management.
Ann Med. 2025 Dec;57(1):2484665. doi: 10.1080/07853890.2025.2484665. Epub 2025 Apr 8.
6
Identification and Validation of the Potential Key Biomarkers for Atopic Dermatitis Mitochondrion by Learning Algorithms.
J Inflamm Res. 2025 Mar 21;18:4291-4306. doi: 10.2147/JIR.S507085. eCollection 2025.
7
Patient Needs and Treatment Goals in Chronic Atopic Pruritus: Does Eczema Make a Difference?
Acta Derm Venereol. 2025 Mar 12;105:adv42773. doi: 10.2340/actadv.v105.42773.
8
Utilization of Computable Phenotypes in Electronic Health Record Research: A Review and Case Study in Atopic Dermatitis.
J Invest Dermatol. 2025 May;145(5):1008-1016. doi: 10.1016/j.jid.2024.08.025. Epub 2024 Nov 1.
9
Digital twins in dermatology, current status, and the road ahead.
NPJ Digit Med. 2024 Aug 26;7(1):228. doi: 10.1038/s41746-024-01220-7.
10
Genomic and functional divergence of strains from atopic dermatitis patients and healthy individuals: insights from global and local scales.
Microbiol Spectr. 2024 Oct 3;12(10):e0057124. doi: 10.1128/spectrum.00571-24. Epub 2024 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验