Akbarialiabad Hossein, Pasdar Amirmohammad, Murrell Dédée F
Faculty of Medicine, UNSW Medicine, University of New South Wales, Sydney, NSW, Australia.
School of Computing and Information Systems, University of Melbourne, Melbourne, VIC, Australia.
NPJ Digit Med. 2024 Aug 26;7(1):228. doi: 10.1038/s41746-024-01220-7.
Digital twins, innovative virtual models synthesizing real-time biological, environmental, and lifestyle data, herald a new era in personalized medicine, particularly dermatology. These models, integrating medical-purpose Internet of Things (IoT) devices, deep and digital phenotyping, and advanced artificial intelligence (AI), offer unprecedented precision in simulating real-world physical conditions and health outcomes. Originating in aerospace and manufacturing for system behavior prediction, their application in healthcare signifies a paradigm shift towards patient-specific care pathways. In dermatology, digital twins promise enhanced diagnostic accuracy, optimized treatment plans, and improved patient monitoring by accommodating the unique complexities of skin conditions. However, a comprehensive review across PubMed, Embase, Web of Science, Cochrane, and Scopus until February 5th, 2024, underscores a significant research gap; no direct studies on digital twins' application in dermatology is identified. This gap signals challenges, including the intricate nature of skin diseases, ethical and privacy concerns, and the necessity for specialized algorithms. Overcoming these barriers through interdisciplinary efforts and focused research is essential for realizing digital twins' potential in dermatology. This study advocates for a proactive exploration of digital twins, emphasizing the need for a tailored approach to dermatological care that is as personalized as the patients themselves.
数字孪生是一种创新的虚拟模型,它整合了实时生物、环境和生活方式数据,开创了个性化医疗的新纪元,尤其是在皮肤病学领域。这些模型集成了医疗用途的物联网(IoT)设备、深度和数字表型分析以及先进的人工智能(AI),在模拟现实世界的身体状况和健康结果方面提供了前所未有的精确性。数字孪生起源于航空航天和制造业用于系统行为预测,其在医疗保健领域的应用标志着向针对患者的护理路径的范式转变。在皮肤病学中,数字孪生有望通过适应皮肤疾病的独特复杂性提高诊断准确性、优化治疗方案并改善患者监测。然而,截至2024年2月5日,对PubMed、Embase、科学网、Cochrane和Scopus进行的全面综述强调了一个重大的研究空白;未发现关于数字孪生在皮肤病学中应用的直接研究。这一空白预示着挑战,包括皮肤疾病的复杂性、伦理和隐私问题以及对专门算法的需求。通过跨学科努力和重点研究克服这些障碍对于实现数字孪生在皮肤病学中的潜力至关重要。本研究倡导积极探索数字孪生,强调需要一种针对皮肤病护理的量身定制方法,这种方法要像患者本身一样个性化。