Bot Daniël M, Peeters Jannes, Liesenborgs Jori, Aerts Jan
Data Science Institute (DSI), Universiteit Hasselt, Diepenbeek, Belgium.
Expertisecentrum voor Digitale Media (EDM), Flanders Make, Universiteit Hasselt, Diepenbeek, Belgium.
PeerJ Comput Sci. 2025 Apr 18;11:e2792. doi: 10.7717/peerj-cs.2792. eCollection 2025.
Exploratory data analysis workflows often use clustering algorithms to find groups of similar data points. The shape of these clusters can provide meaningful information about the data. For example, a Y-shaped cluster might represent an evolving process with two distinct outcomes. This article presents flare-sensitive clustering (FLASC), an algorithm that detects branches within clusters to identify such shape-based subgroups. FLASC builds upon HDBSCAN*-a state-of-the-art density-based clustering algorithm-and detects branches in a post-processing step using within-cluster connectivity. Two algorithm variants are presented, which trade computational cost for noise robustness. We show that both variants scale similarly to HDBSCAN* regarding computational cost and provide similar outputs across repeated runs. In addition, we demonstrate the benefit of branch detection on two real-world data sets. Our implementation is included in the Python package and available as a standalone package at https://github.com/vda-lab/pyflasc.
探索性数据分析工作流程通常使用聚类算法来寻找相似数据点的组。这些聚类的形状可以提供有关数据的有意义信息。例如,一个Y形聚类可能代表一个具有两种不同结果的演化过程。本文介绍了耀斑敏感聚类(FLASC),这是一种检测聚类内分支以识别此类基于形状的子组的算法。FLASC基于HDBSCAN *(一种先进的基于密度的聚类算法)构建,并在使用聚类内连通性的后处理步骤中检测分支。提出了两种算法变体,它们以计算成本换取噪声鲁棒性。我们表明,两种变体在计算成本方面与HDBSCAN *的扩展方式相似,并且在重复运行中提供相似的输出。此外,我们在两个真实世界的数据集上展示了分支检测的好处。我们的实现包含在Python包中,并可在https://github.com/vda-lab/pyflasc上作为独立包获取。