Suppr超能文献

用扩散模型测量心理物理函数。

Measuring psychometric functions with the diffusion model.

机构信息

Ohio State University.

出版信息

J Exp Psychol Hum Percept Perform. 2014 Apr;40(2):870-88. doi: 10.1037/a0034954. Epub 2014 Jan 20.

Abstract

The diffusion decision model (Ratcliff, 1978) was used to examine discrimination for a range of perceptual tasks: numerosity discrimination, number discrimination, brightness discrimination, motion discrimination, speed discrimination, and length discrimination. The model produces a measure of the quality of the information that drives decision processes, a measure termed drift rate in the model. As drift rate varies across experimental conditions that differ in difficulty, a psychometric function that plots drift rate against difficulty can be constructed. Psychometric functions for the tasks in this article usually plot accuracy against difficulty, but for some levels of difficulty, accuracy can be at ceiling. The diffusion model extends the range of difficulty that can be evaluated because drift rates depend on response times (RTs) as well as accuracy, and when RTs decrease across conditions that are all at ceiling in accuracy, then drift rates will distinguish among the conditions. Signal detection theory assumes that the variable driving performance is the z-transform of the accuracy value, and, somewhat surprisingly, this closely matches drift rate extracted from the diffusion model when accuracy is not at ceiling, but not sometimes when accuracy is high. Even though the functions are similar in the middle of the range, the interpretations of the variability in the models (e.g., perceptual variability, decision process variability) are incompatible.

摘要

扩散决策模型(Ratcliff,1978)被用于研究一系列感知任务的辨别力:数量辨别、数字辨别、亮度辨别、运动辨别、速度辨别和长度辨别。该模型产生了一种衡量驱动决策过程的信息质量的指标,在模型中称为漂移率。由于漂移率在难度不同的实验条件下有所变化,因此可以构建一个描绘漂移率与难度关系的心理测量函数。本文中任务的心理测量函数通常绘制准确性与难度的关系,但对于某些难度水平,准确性可能达到上限。扩散模型扩展了可以评估的难度范围,因为漂移率不仅取决于准确性,还取决于反应时间(RT),当 RT 在所有准确性都达到上限的条件下降低时,漂移率将区分这些条件。信号检测理论假设,驱动性能的变量是准确性值的 z 变换,而且,令人惊讶的是,当准确性没有达到上限时,这与从扩散模型中提取的漂移率非常匹配,但当准确性较高时,情况并非如此。即使函数在中间范围相似,模型中的可变性解释(例如,感知可变性、决策过程可变性)也是不兼容的。

相似文献

1
Measuring psychometric functions with the diffusion model.
J Exp Psychol Hum Percept Perform. 2014 Apr;40(2):870-88. doi: 10.1037/a0034954. Epub 2014 Jan 20.
2
Using diffusion models for symbolic numeracy tasks to examine aging effects.
J Exp Psychol Learn Mem Cogn. 2024 Sep;50(9):1385-1403. doi: 10.1037/xlm0001400.
3
Speed and accuracy of visual image discrimination by rats.
Front Neural Circuits. 2013 Dec 18;7:200. doi: 10.3389/fncir.2013.00200. eCollection 2013.
4
Joint entropy for space and spatial frequency domains estimated from psychometric functions of achromatic discrimination.
PLoS One. 2014 Jan 23;9(1):e86579. doi: 10.1371/journal.pone.0086579. eCollection 2014.
6
Dissociable perceptual-learning mechanisms revealed by diffusion-model analysis.
Psychon Bull Rev. 2011 Jun;18(3):490-7. doi: 10.3758/s13423-011-0079-8.
7
Motion-onset visual evoked potentials predict performance during a global direction discrimination task.
Neuropsychologia. 2010 Oct;48(12):3563-72. doi: 10.1016/j.neuropsychologia.2010.08.005. Epub 2010 Aug 14.
8
Modeling individual differences in response time and accuracy in numeracy.
Cognition. 2015 Apr;137:115-136. doi: 10.1016/j.cognition.2014.12.004. Epub 2015 Jan 29.
9
A Two-Stage Process Model of Sensory Discrimination: An Alternative to Drift-Diffusion.
J Neurosci. 2016 Nov 2;36(44):11259-11274. doi: 10.1523/JNEUROSCI.1367-16.2016.
10
Saccadic and perceptual performance in visual search tasks. I. Contrast detection and discrimination.
J Opt Soc Am A Opt Image Sci Vis. 2003 Jul;20(7):1341-55. doi: 10.1364/josaa.20.001341.

引用本文的文献

2
The neuroscience of mental illness: Building toward the future.
Cell. 2024 Oct 17;187(21):5858-5870. doi: 10.1016/j.cell.2024.09.028.
3
Sequential Effects on Reaction Time Distributions: Commonalities and Differences Across Paradigms.
J Cogn. 2024 Sep 3;7(1):68. doi: 10.5334/joc.395. eCollection 2024.
5
Neurocomputational Models of Interval Timing: Seeing the Forest for the Trees.
Adv Exp Med Biol. 2024;1455:51-78. doi: 10.1007/978-3-031-60183-5_4.
7
Decision-making processes in perceptual learning depend on effectors.
Sci Rep. 2024 Mar 7;14(1):5644. doi: 10.1038/s41598-024-55508-5.
8
Do moments of inattention during study cause the error-speed effect for targets in recognition-memory tasks?
Psychon Bull Rev. 2024 Oct;31(5):2180-2188. doi: 10.3758/s13423-024-02475-7. Epub 2024 Feb 26.
9
Earlier social information has a stronger influence on judgments.
Sci Rep. 2024 Jan 2;14(1):105. doi: 10.1038/s41598-023-50345-4.
10
Reduced choice-confidence in negative numerals.
PLoS One. 2022 Oct 3;17(10):e0272796. doi: 10.1371/journal.pone.0272796. eCollection 2022.

本文引用的文献

1
HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python.
Front Neuroinform. 2013 Aug 2;7:14. doi: 10.3389/fninf.2013.00014. eCollection 2013.
3
Parameter variability and distributional assumptions in the diffusion model.
Psychol Rev. 2013 Jan;120(1):281-92. doi: 10.1037/a0030775. Epub 2012 Nov 12.
4
Number sense across the lifespan as revealed by a massive Internet-based sample.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11116-20. doi: 10.1073/pnas.1200196109. Epub 2012 Jun 25.
6
Evaluating vigilance deficits in ADHD: a meta-analysis of CPT performance.
J Abnorm Psychol. 2012 May;121(2):360-71. doi: 10.1037/a0027205. Epub 2012 Mar 19.
8
Children are not like older adults: a diffusion model analysis of developmental changes in speeded responses.
Child Dev. 2012 Jan-Feb;83(1):367-81. doi: 10.1111/j.1467-8624.2011.01683.x. Epub 2011 Dec 21.
10
Specifying theories of developmental dyslexia: a diffusion model analysis of word recognition.
Dev Sci. 2011 Nov;14(6):1340-54. doi: 10.1111/j.1467-7687.2011.01091.x. Epub 2011 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验