IEEE Trans Med Imaging. 2020 Aug;39(8):2688-2700. doi: 10.1109/TMI.2020.2993291. Epub 2020 May 8.
Under the global pandemic of COVID-19, the use of artificial intelligence to analyze chest X-ray (CXR) image for COVID-19 diagnosis and patient triage is becoming important. Unfortunately, due to the emergent nature of the COVID-19 pandemic, a systematic collection of CXR data set for deep neural network training is difficult. To address this problem, here we propose a patch-based convolutional neural network approach with a relatively small number of trainable parameters for COVID-19 diagnosis. The proposed method is inspired by our statistical analysis of the potential imaging biomarkers of the CXR radiographs. Experimental results show that our method achieves state-of-the-art performance and provides clinically interpretable saliency maps, which are useful for COVID-19 diagnosis and patient triage.
在 COVID-19 全球大流行的背景下,利用人工智能分析胸部 X 光(CXR)图像以进行 COVID-19 诊断和患者分诊变得越来越重要。不幸的是,由于 COVID-19 大流行的紧急性质,很难对 CXR 数据集进行系统收集以进行深度神经网络训练。为了解决这个问题,我们在这里提出了一种基于补丁的卷积神经网络方法,该方法具有相对较少的可训练参数,可用于 COVID-19 诊断。所提出的方法受到我们对 CXR 射线照片潜在成像生物标志物的统计分析的启发。实验结果表明,我们的方法达到了最先进的性能,并提供了临床可解释的显着性图,这对于 COVID-19 诊断和患者分诊非常有用。
IEEE Trans Med Imaging. 2020-5-8
Comput Methods Programs Biomed. 2020-5-8
IEEE Trans Med Imaging. 2020-8
Comput Methods Programs Biomed. 2020-6-5
Eur Radiol. 2020-7-20
BMC Med Inform Decis Mak. 2025-7-1
J Pers Med. 2025-5-10
PLoS One. 2025-3-20
Diagnostics (Basel). 2024-12-13
J Imaging Inform Med. 2025-2