School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, P.R. China.
National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, P.R. China.
Br J Radiol. 2022 Jan 1;95(1129):20201302. doi: 10.1259/bjr.20201302. Epub 2021 Nov 19.
To evaluate the diagnostic performance of a radiomics model based on multiregional and multiparametric MRI to classify paediatric posterior fossa tumours (PPFTs), explore the contribution of different MR sequences and tumour subregions in tumour classification, and examine whether contrast-enhanced weighted (T1C) images have irreplaceable added value.
This retrospective study of 136 PPFTs extracted 11,958 multiregional (enhanced, non-enhanced, and total tumour) features from multiparametric MRI (- and weighted, T1C, fluid-attenuated inversion recovery, and diffusion-weighted images). These features were subjected to fast correlation-based feature selection and classified by a support vector machine based on different tasks. Diagnostic performances of multiregional and multiparametric MRI features, different sequences, and different tumoral regions were evaluated using multiclass and one--rest strategies.
The established model achieved an overall area under the curve (AUC) of 0.977 in the validation cohort. The performance of PPFTs significantly improved after replacing T1C with apparent diffusion coefficient maps added into the plain scan sequences (AUC from 0.812 to 0.917). When oedema features were added to contrast-enhancing tumour volume, the performance did not significantly improve.
The radiomics model built by multiregional and multiparametric MRI features allows for the excellent distinction of different PPFTs and provides valuable references for the rational adoption of MR sequences.
This study emphasized that T1C has limited added value in predicting PPFTs and should be cautiously adopted. Selecting optimal MR sequences may help guide clinicians to better allocate acquisition sequences and reduce medical costs.
评估基于多区域和多参数 MRI 的放射组学模型在小儿后颅窝肿瘤(PPFTs)分类中的诊断性能,探讨不同 MR 序列和肿瘤亚区在肿瘤分类中的贡献,并检验增强 T1 加权(T1C)图像是否具有不可替代的附加价值。
本回顾性研究纳入了 136 例 PPFTs,从多参数 MRI(-和 T1 加权、T1C、液体衰减反转恢复和弥散加权图像)中提取了 11958 个多区域(增强、非增强和全肿瘤)特征。这些特征经过快速基于相关性的特征选择,并基于不同任务由支持向量机进行分类。采用多类和一轮法评估多区域和多参数 MRI 特征、不同序列和不同肿瘤区域的诊断性能。
在验证队列中,所建立的模型总体曲线下面积(AUC)为 0.977。在将 T1C 替换为加入平扫序列的表观扩散系数图后,PPFTs 的性能显著提高(AUC 从 0.812 提高到 0.917)。当将水肿特征添加到增强肿瘤体积中时,性能并未显著提高。
由多区域和多参数 MRI 特征构建的放射组学模型能够出色地区分不同的 PPFTs,为合理采用 MR 序列提供了有价值的参考。
本研究强调 T1C 在预测 PPFTs 方面的附加价值有限,应谨慎采用。选择最佳的 MR 序列可能有助于指导临床医生更好地分配采集序列并降低医疗成本。