Suppr超能文献

新冠疫情中的未知不确定性:伤亡分析与估计的多维度识别及数学建模

Unknown uncertainties in the COVID-19 pandemic: Multi-dimensional identification and mathematical modelling for the analysis and estimation of the casualties.

作者信息

Tutsoy Onder, Balikci Kemal, Ozdil Naime Filiz

机构信息

Adana Alparslan Turkes Science and Technology University, Adana, Turkey.

Osmaniye Korkut Ata University, Osmaniye, Turkey.

出版信息

Digit Signal Process. 2021 Jul;114:103058. doi: 10.1016/j.dsp.2021.103058. Epub 2021 Apr 15.

Abstract

Insights about the dominant dynamics, coupled structures and the unknown uncertainties of the pandemic diseases play an important role in determining the future characteristics of the pandemic diseases. To enhance the prediction capabilities of the models, properties of the unknown uncertainties in the pandemic disease, which can be utterly random, or function of the system dynamics, or it can be correlated with an unknown function, should be determined. The known structures and amount of the uncertainties can also help the state authorities to improve the policies based on the recognized source of the uncertainties. For instance, the uncertainties correlated with an unknown function imply existence of an undetected factor in the casualties. In this paper, we extend the SpID-N (Suspicious-Infected-Death with non-pharmacological policies) model as in the form of MIMO (Multi-Input-Multi-Output) structure by adding the multi-dimensional unknown uncertainties. The results confirm that the infected and death sub-models mostly have random uncertainties (due undetected casualties) whereas the suspicious sub-model has uncertainties correlated with the internal dynamics (governmental policy of increasing the number of the daily tests) for Turkey. However, since the developed MIMO model parameters are learned from the data (daily reported casualties), it can be easily adapted for other countries. Obtained model with the corresponding uncertainties predicts a distinctive second peak where the number of deaths, infected and suspicious casualties disappear in 240, 290, and more than 300 days, respectively, for Turkey.

摘要

了解大流行疾病的主导动态、耦合结构和未知不确定性,对于确定大流行疾病的未来特征起着重要作用。为了提高模型的预测能力,需要确定大流行疾病中未知不确定性的性质,这些不确定性可能是完全随机的,或是系统动态的函数,也可能与未知函数相关。已知的不确定性结构和数量也有助于国家当局根据已确认的不确定性来源改进政策。例如,与未知函数相关的不确定性意味着在伤亡情况中存在未被发现的因素。在本文中,我们通过添加多维未知不确定性,将SpID-N(带有非药物政策的可疑-感染-死亡)模型扩展为多输入多输出(MIMO)结构形式。结果证实,对于土耳其而言,感染和死亡子模型大多具有随机不确定性(由于未检测到的伤亡情况),而可疑子模型的不确定性与内部动态(政府增加每日检测数量的政策)相关。然而,由于所开发的MIMO模型参数是从数据(每日报告的伤亡情况)中学习得到的,因此它可以很容易地适用于其他国家。对于土耳其,带有相应不确定性的所得模型预测出一个独特的第二峰值,在该峰值处,死亡、感染和可疑伤亡人数分别在240天、290天和300多天后消失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a1/8048408/27a98d5f0d59/gr001_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验